Knowledge-based Engineering and Sciences (2024), 5, (2), 75-139

doi:10.51526/kbes.2024.5.2.75-139
check for
updates

REVIEW PAPER

Reservoir Operation based Machine Learning Models:
Comprehensive Review for Limitations, Research Gap,
and Possible Future Research Direction

Ahmad Fares Al-Nouti, ! Minglei Fu,2 and Neeraj Dhanraj Bokde3

1Civil and Environmental Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi
Arabia

2College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China

3Renewable and Sustainable Energy Research Center, Technology Innovation Institute, Abu Dhabi, 9639, United Arab
Emirates

*Corresponding author. Email: Afalnouti@gmail.com

Received 05 June 2024; revised 30 July 2024; accepted 26 August 2024; first published online 31 August 2024
y p g p g

Abstract

The operation of dams and reservoirs is critical for water resource management, including flood control,
irrigation, hydropower generation, and environmental conservation. Traditional optimization techniques
like Dynamic Programming (DP), Linear Programming (LP), and Nonlinear Programming (NLP)
have been foundational in managing these operations. However, they often fall short in addressing the
complexities of modern water management challenges posed by climate variability and increasing water
demands. Machine learning (ML) techniques have emerged as powerful tools to enhance the efficiency
and accuracy of dam and reservoir operations. This paper provides a comprehensive review of various
ML models, including Neural Networks, Genetic Algorithms, Decision Trees, and Ensemble Methods,
highlighting their applications in predicting reservoir inflows, optimizing water release schedules, and
improving flood risk management. Notably, ML models like Long Short-Term Memory (LSTM) and
Convolutional Neural Networks (CNNs) have shown significant improvements in forecasting accuracy
and operational decision-making. Despite these advancements, several limitations and research gaps persist,
including the need for real-time data integration, adaptive learning mechanisms, and models that consider
socio-economic and climatic factors. This review underscores the importance of addressing these gaps
to develop more robust and generalizable ML models. Future research directions are suggested to focus
on hybrid models combining ML with traditional optimization techniques, comprehensive validation
across diverse conditions, and the integration of ecological and economic considerations. By systematically
identifying and addressing these limitations, this research aims to pave the way for more effective and
sustainable dam and reservoir management practices. Leading towards suggesting that enhancing real-
time data integration and developing adaptive learning mechanisms are in order to improve model
responsiveness.

Keywords: Reservoir operation; Machine learning; ‘Water resources harvesting; Optimization.

1. Introduction

A reservoir is a man-made lake where water is stored, often created by constructing a dam across
a river or waterway [1]. Dams are substantial barriers built to control water flow, maintain water
supply, regulate flooding, and generate hydroelectric power [2]. The operation of dams and reservoirs

© Knowledge-based Engineering and Sciences 2024. Journal homepage https://kbes.journals.publicknowledgeproject.org/index.php/kbes


https://kbes.journals.publicknowledgeproject.org/index.php/kbes
Afalnouti@gmail.com
https://kbes.journals.publicknowledgeproject.org/index.php/kbes

76 Ahmad Fares Al-Nouti ef al.

involves managing the inflow and outflow of water, maintaining water levels within certain thresholds,
and optimizing the usage of stored water for multiple purposes including irrigation, drinking, and
electricity generation. Effective operation can mitigate the effects of droughts and floods, enhance
water quality, and support sustainable water management [2]. The importance of optimizing the
operations of dams and reservoirs cannot be overstressed. As climate variability intensifies and water
scarcity issues become more prominent, the efficient management of water resources becomes
critical [3]. Optimization of dam operations ensures that water distribution is managed to meet
the competing demands of agriculture, urban areas, and ecological systems. It helps in maximizing
hydroelectric power generation while minimizing the adverse impacts of such infrastructure on river
ecosystems and downstream communities [4].

The optimal operation of dams and reservoirs is a critical aspect of water resource management,
ensuring that water supply, flood control, irrigation, and hydropower generation are effectively
balanced. Reservoirs play a vital role in regulating water flow and storing water for various uses,
while dams are essential for controlling water levels and generating electricity [4]. However, finding
the optimal operational strategy for these infrastructures presents several challenges. These challenges
include the variability in water inflows, changing weather patterns, conflicting water use demands,
and the complex physical and environmental interactions within the reservoir systems [5]. Traditional
methods often fall short in addressing these complexities, resulting in suboptimal performance,
inefficiencies, and sometimes even failures in water management and distribution.

Machine learning (ML) offers promising solutions to overcome the limitations inherent in
traditional optimization methods. ML techniques can analyze large datasets to identify patterns
and make predictions that can significantly enhance the decision-making process for reservoir and
dam operations [6], [7]. By leveraging historical data, real-time inputs, and predictive analytics,
ML models can optimize operational strategies, improve accuracy in forecasting water inflows and
demands, and adapt to changing environmental conditions. The flexibility and learning capabilities
of ML models make them suitable for handling the non-linear and dynamic nature of water systems,
thereby offering a more robust framework for optimizing dam and reservoir operations [8], [9].

A comprehensive review of the literature reveals significant advancements in applying ML to dam
and reservoir management. Studies have employed various ML techniques such as neural networks,
genetic algorithms, and decision trees to enhance operational strategies. For instance, neural network
models have been used to predict reservoir inflows with high accuracy, while genetic algorithms
have optimized release schedules to balance water supply and demand effectively [10]. Decision
tree models have been applied to forecast flood risks and improve emergency response strategies
[11]. Despite these advancements, there are still notable limitations and gaps in the current research.
Many studies rely on specific datasets and conditions, limiting the generalizability of their findings.
Additionally, the integration of ML models with real-time data and adaptive management strategies
remains underexplored [12].

Identifying the limitations and research gaps in the current literature is crucial for guiding future
research towards more effective solutions for dam and reservoir operations. Understanding where
existing methods fall short can help concentrate efforts on developing new models and approaches
that address these weaknesses. This focused research direction is essential for achieving truly optimal
operations that can adapt to the increasing variability and uncertainty in water resource management.
By systematically reviewing the existing literature and highlighting these gaps, we can pave the way
for more innovative and effective ML applications in this field.

The objective of this review is to compile and analyze studies employing various ML techniques
in the context of dam and reservoir operations. Through this comprehensive review, we aim to
identify the specific limitations and research gaps that currently exist. Furthermore, we will suggest
potential future research directions that could address these gaps, thereby enhancing the effectiveness
and reliability of ML models in optimizing dam and reservoir operations. This structured approach
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will provide valuable insights for researchers and practitioners, ultimately contributing to more
sustainable and efficient water resource management practices.

2. Reservoir Operation

Reservoir operation encompasses a wide range of activities aimed at managing and optimizing the
use of water stored in a reservoir. These activities are crucial for ensuring the safety, efficiency,
and effectiveness of the reservoir in meeting various demands such as water supply, lood control,
irrigation, and hydropower generation [13]. Effective reservoir operation requires careful monitoring
and control of water levels to balance competing needs and mitigate risks. This involves the use of
advanced technologies and predictive models to forecast inflow, outflow, and water quality parameters.
Additionally, reservoir operation must account for environmental considerations, ensuring that
downstream ecosystems receive adequate water flows to maintain their health [14]. The integration
of ML and optimization algorithms has significantly enhanced the ability to manage reservoirs
dynamically, responding to changing conditions with greater precision. Ultimately, the goal of
reservoir operation is to ensure a reliable and sustainable water resource that supports human activities
while protecting the environment [15].

2.1 Reservoir Flood Prediction

Reservoir flood prediction involves anticipating potential flood events to manage water levels ef-
fectively and mitigate risks. This process uses historical data, real-time monitoring, and predictive
models to forecast inflow volumes and possible flood scenarios [16]. Advanced techniques, such
as neural networks and ensemble models, enhance the accuracy of these predictions by analyzing
complex data patterns and environmental variables [17]. Accurate flood prediction allows for pre-
emptive water releases, maintaining safe reservoir levels and preventing overtopping. Effective flood
management ensures the safety of downstream communities, protects infrastructure, and maintains
ecological balance by preventing sudden, excessive water releases. This is critical for safeguarding
lives and property in flood-prone areas [18].

Reservoir flood prediction is a critical component of water resource management aimed at
anticipating and mitigating the impacts of potential flood events. This operation utilizes a combination
of historical data, real-time monitoring, and sophisticated predictive models to forecast inflow volumes
and possible flood scenario. Flood prediction models often employ advanced ML techniques, such as
neural networks and ensemble methods, which are capable of analyzing complex data patterns and
environmental variables to deliver accurate forecasts. The primary goal is to maintain reservoir levels
within safe limits, thereby preventing the risk of overtopping and ensuring the safety of downstream
communities and infrastructure [19], [20].

Accurate flood prediction enables reservoir managers to implement preemptive water releases,
thereby reducing the likelihood of sudden, excessive water discharge that can lead to downstream
flooding [21]. These proactive measures are crucial for protecting lives and property in flood-prone
areas. Additionally, effective lood management helps maintain ecological balance by ensuring that
water releases do not disrupt natural habitats or water quality. Advanced flood prediction systems can
integrate real-time data from various sources, including weather forecasts, river flow sensors, and
satellite imagery, to provide a comprehensive view of the current and future state of the reservoir
[22].

Moreover, predictive models can simulate various flood scenarios, allowing managers to assess
the potential impacts of different management strategies and make informed decisions [22]. This
capability is particularly valuable in the context of climate change, which is expected to increase
the frequency and severity of extreme weather events [23]. By leveraging advanced technologies
and data analytics, reservoir flood prediction enhances the ability of water managers to respond to
emerging threats and ensure the resilience and sustainability of water resource systems. Ultimately,
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the integration of flood prediction into reservoir operations represents a significant advancement in
mitigating flood risks and optimizing the management of water resources [24].

2.2 Monitoring of Reservoir Inflow

Monitoring reservoir inflow involves tracking the amount of water entering the reservoir from
rivers, rainfall, and other sources. This operation is essential for managing water levels within the
reservoir to ensure a balance between water supply and flood control. Accurate inflow data helps in
planning water releases, optimizing storage capacity, and preparing for drought or flood conditions.
Advanced monitoring systems and predictive models enhance the accuracy and timeliness of inflow
data [25], [26].

Monitoring reservoir inflow is a vital task in reservoir management, essential for maintaining
optimal water levels and ensuring that the reservoir meets the demands of various uses, such as
irrigation, domestic water supply, and hydropower generation. This operation involves continuously
tracking the volume of water entering the reservoir from sources like rivers, rainfall, and snowmelt.
Advanced monitoring systems, equipped with sensors, gauges, and remote sensing technologies,
provide real-time data on inflow rates and volumes, enabling accurate and timely decision-making
[27].

The integration of ML models significantly enhances the accuracy and reliability of inflow
predictions. These models analyze historical data and current conditions to forecast future inflows,
taking into account factors such as weather patterns, upstream water use, and environmental changes.
By providing precise inflow predictions, these models help reservoir managers optimize water storage
and release strategies, ensuring that there is sufficient water available to meet demand while also
maintaining adequate storage for flood control and drought mitigation [25]-[27].

Real-time inflow monitoring is crucial for dynamic reservoir operations, allowing managers to
respond promptly to changes in water availability. For example, during periods of heavy rainfall,
accurate inflow data can help prevent reservoir overflow by enabling timely water releases [28].
Conversely, during dry spells, monitoring inflow can assist in conserving water and prioritizing its
allocation to critical uses. Additionally, continuous inflow data supports long-term planning and
resource management, aiding in the development of strategies to cope with varying hydrological con-
ditions [29]. Advanced inflow monitoring systems can integrate data from multiple sources, including
satellite observations, weather forecasts, and hydrological models, to provide a comprehensive view of
the reservoir’s inflow dynamics. This holistic approach ensures that all relevant factors are considered
in inflow predictions, leading to more effective and sustainable water management practices. In
summary, monitoring reservoir inflow is a cornerstone of efficient reservoir management, providing
the data needed to balance competing water demands and safeguard against extreme hydrological
events.

2.3 Water Release Management

Water release management is the operation of controlling the outflow of water from the reservoir
through gates, spillways, or turbines. This operation ensures that the reservoir maintains optimal
water levels for various uses, including irrigation, domestic water supply, hydropower generation,
and environmental flow requirements. Proper water release management balances the needs of
different stakeholders while maintaining safety and operational efficiency [30], [31].

Water release management is a crucial operation in reservoir management, involving the strategic
control of water outflows to balance various objectives such as water supply, flood control, irrigation,
and hydropower generation [32]. This task requires precise decision-making to determine when and
how much water to release, based on factors like current reservoir levels, inflow rates, downstream
water needs, and environmental considerations. Effective water release management ensures that
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water resources are utilized efficiently while minimizing risks and meeting the diverse requirements
of stakeholders [33], [34].

Advanced algorithms and real-time monitoring systems play a pivotal role in optimizing water
release schedules [35]. These technologies enable reservoir managers to analyze vast amounts of data
and make informed decisions. Predictive models, for instance, can forecast future inflows and water
demands, allowing managers to plan releases that maintain optimal reservoir levels and prevent both
shortages and flooding.[36], [37] By leveraging data analytics, water release strategies can be adjusted
dynamically in response to changing conditions, enhancing the flexibility and responsiveness of
reservoir operations [38].

In addition to managing routine water releases, this operation is critical during extreme weather
events. For example, during heavy rainfall, timely water releases can prevent reservoir overflow and
downstream flooding [39]-[42]. Conversely, during drought conditions, careful management of
water releases ensures that essential water needs are met without depleting reservoir reserves. This
balancing act is vital for maintaining the long-term sustainability of water resources and ensuring
the resilience of the reservoir system [43], [44].

Water release management also involves coordinating with various stakeholders, including
agricultural users, municipal water suppliers, environmental agencies, and energy producers. Effective
communication and collaboration are essential to align water release strategies with the needs and
priorities of these groups [45], [46]. Also, regulatory requirements and environmental regulations
must be considered to ensure that water releases comply with legal standards and support ecological
health. Water release management is a complex and dynamic operation that requires a combination
of advanced technology, predictive analytics, and stakeholder coordination. By optimizing water
release strategies, reservoir managers can enhance the efficiency and reliability of water resource
management, ensuring that water is available when and where it is needed most [47].

2.4 Hydropower Generation Optimization

Dams with hydropower facilities are managed to maximize electricity generation while meeting other
operational requirements, as detailed in Figure 1. This involves scheduling water releases through
turbines to generate electricity during peak demand periods. Hydropower generation optimization
takes into account factors such as water availability, energy demand, and grid requirements [48],
[49]. Advanced models and control systems help in making real-time decisions to optimize power
production [50].

Hydropower generation optimization focuses on maximizing the efficiency and output of electric-
ity production from reservoirs while balancing other water resource management goals [51]. This
process involves strategically scheduling water releases through turbines to generate power during
periods of peak electricity demand and storing water when demand is lower [52]. The objective is
to ensure that hydropower plants operate at optimal capacity, providing a reliable and sustainable
source of energy [53].

ML algorithms, such as reinforcement learning and neural networks, play a significant role in
optimizing hydropower generation [54]. These models can predict electricity demand patterns,
reservoir inflows, and other relevant factors, enabling managers to make data-driven decisions about
water release schedules. By analyzing historical data and real-time inputs, ML models can identify the
most efficient strategies for energy production, taking into account variables like weather conditions,
inflow rates, and electricity prices [55].

Optimizing hydropower generation involves balancing multiple objectives. In addition to maxi-
mizing energy output, reservoir managers must consider environmental flow requirements, flood
control, irrigation needs, and recreational uses. Advanced optimization techniques help integrate
these competing demands, ensuring that water releases support diverse needs while maintaining
the overall efficiency of the hydropower system [56]. Hydropower optimization contributes to grid
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stability and energy security. By generating electricity during peak demand periods, hydropower
plants can reduce reliance on fossil fuels and support the integration of renewable energy sources
like wind and solar power [57]. This flexibility is particularly valuable in modern energy systems
that require reliable backup power to accommodate fluctuations in renewable energy generation.

transmission
network

transformer

generator

turbine

Figure 1: Hydropower generation components schematic diagram [59].

Hydropower generation optimization also involves continuous monitoring and adjustment. Real-
time data on reservoir levels, inflows, and energy demand allows managers to adapt strategies quickly,
responding to changing conditions and unforeseen events. Advanced control systems can automate
many aspects of this process, improving responsiveness and reducing the potential for human error.
By leveraging advanced ML techniques and real-time data, reservoir managers can achieve a balanced
and integrated approach to water resource management, supporting both energy and environmental

goals [58].

2.5 Sediment Management

Sediment management involves monitoring and controlling the accumulation of sediments in the
reservoir, which can affect water storage capacity and dam operation. Figure 2 shows the areas affected
by sediment. Various techniques are employed for sediment management, including dredging,
flushing, and sediment bypass systems. Dredging involves physically removing accumulated sediments
from the reservoir, which can be resource-intensive but highly effective. Flushing uses controlled
water releases to transport sediments downstream, while sediment bypass systems divert sediments
around the reservoir, preventing accumulation [60]-[62].
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Figure 2: Areas of the dam aﬁ%cted by sedimentation [68].

Advanced predictive models and remote sensing technologies enhance sediment management
by providing accurate data on sedimentation rates and identifying areas at risk. ML algorithms can
analyze historical data and real-time inputs to forecast sediment deposition patterns, enabling proactive
management strategies. By predicting where and when sediments will accumulate, managers can
schedule maintenance activities more efficiently and reduce the risk of sudden capacity loss [63],
[64].

Sediment management is also essential for protecting water quality and maintaining the ecological
health of the reservoir and downstream environments. Accumulated sediments can affect water clarity,
temperature, and nutrient levels, impacting aquatic habitats and species. By managing sediments
effectively, reservoir managers can help preserve biodiversity and support the overall health of the
ecosystem [65], [66]. Additionally, sediment management has economic implications. Maintaining
reservoir capacity ensures that water storage and hydropower generation can continue at optimal
levels, preventing costly disruptions. Effective sediment management strategies can also extend the
lifespan of reservoir infrastructure, reducing the need for expensive repairs or replacements. Sediment
management is vital for sustaining the operational efficiency and environmental health of reservoirs.
By utilizing advanced technologies and predictive models, reservoir managers can implement effective
strategies to manage sediments, ensuring the long-term sustainability and functionality of these
critical water resources [67].

2.6 Environmental Flow Management
Environmental flow management is the practice of regulating water releases from reservoirs to
maintain healthy ecosystems downstream. This approach ensures that the timing, quantity, and
quality of water flows mimic natural patterns, supporting the needs of both aquatic and terrestrial
habitats [69]. Effective environmental low management is essential for preserving biodiversity,
maintaining water quality, and ensuring the resilience of ecosystems to environmental changes.
This involves adjusting water releases to mimic natural flow patterns, supporting fish migration,
maintaining water quality, and preserving habitat [70].

One key aspect of environmental low management is the determination of flow requirements
for different species and ecological processes. This involves comprehensive ecological studies to
understand the life cycles and habitat needs of various species, particularly fish and invertebrates that
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are highly dependent on specific flow conditions for spawning, feeding, and migration [71]. These
studies help in establishing flow regimes that support the critical ecological functions of rivers and
wetlands. Another important component is the integration of real-time monitoring systems. These
systems use sensors and remote sensing technologies to collect data on water levels, flow rates, and
environmental conditions. Advanced data analytics and ML models analyze this data to predict future
conditions and inform management decisions. For example, real-time data on rainfall, temperature,
and upstream water use can help predict inflow volumes and optimize water release schedules to
meet ecological flow requirements [72]-[74].

Adaptive management strategies are also crucial in environmental flow management. These
strategies involve continuously monitoring ecological responses to flow regimes and adjusting
management practices based on observed outcomes. This iterative process allows managers to
fine-tune water releases to achieve desired ecological objectives while also responding to changing
environmental conditions, such as droughts or floods [75]. In addition to ecological considerations,
environmental flow management must balance human demands for water, including agriculture,
industry, and municipal uses. This requires a holistic approach that integrates ecological and socio-
economic factors into water management plans. Collaborative governance involving stakeholders
from various sectors ensures that environmental flows are maintained without compromising the
water needs of human communities [76], [77].

The benefits of effective environmental flow management extend beyond ecological health. It
enhances water quality by diluting pollutants, supports recreational activities such as fishing and
boating, and preserves cultural values associated with rivers and wetlands [78]. By maintaining the
natural dynamics of water systems, environmental low management contributes to the sustainability
and resilience of ecosystems and human communities alike. Environmental low management is a
complex but vital practice for sustaining riverine and wetland ecosystems. It requires a multidisci-
plinary approach that combines ecological research, advanced monitoring technologies, adaptive
management, and stakeholder collaboration. By ensuring that water flows support both ecological
and human needs, this practice plays a crucial role in sustainable water resource management [79],
[80].

3. Machine Learning Techniques

ML algorithms are diverse and can be classified into various categories based on their underlying
principles, methodologies, and applications. Understanding these categories is essential for selecting
the appropriate algorithm for specific tasks, optimizing performance, and addressing the complexities
of different data types. This overview provides a brief explanation of key ML algorithm categories,
including their characteristics and typical use cases.

Mathematical Programming: It involves formulating and solving optimization problems using
techniques like Linear Programming (LP), Nonlinear Programming (NLP), and Integer Program-
ming (IP). These methods are used to find optimal solutions for resource allocation, supply chain
management, and decision-making under constraints [81].

Evolutionary Algorithms: Inspired by natural selection, they iteratively improve candidate solu-
tions based on fitness criteria. Common methods include Genetic Algorithms (GA) and Differential
Evolution (DE), which are effective for complex optimization problems like scheduling and ML
model tuning [82].

Deep Learning and Neural Networks: Deep Learning and Neural Networks consist of layers
of interconnected nodes that process data to extract features and patterns. They excel in tasks like
image recognition and natural language processing, using models such as Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) [83].

Ensemble: Ensemble Learning combines multiple models to improve predictive performance and
robustness. Techniques like Bagging, Boosting, and Random Forests reduce overfitting and increase
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stability, making them suitable for classification, regression, and anomaly detection [84]-[86].

Bayesian Methods: Methods that use Bayes’ Theorem to update probabilities based on new
data. Algorithms like Naive Bayes and Bayesian Networks are used for probabilistic modeling and
decision-making under uncertainty, particularly when data is sparse or incomplete [87], [88].

Decision Tree Algorithms: They create a tree-like model of decisions based on data features.
Methods such as CART and C4.5 are used for classification and regression, offering easy interpretabil-
ity and visualization for exploratory data analysis [89].

Dimensionality Reduction: Techniques to reduce the number of features in a dataset while
preserving information. PCA, LDA, and t-SNE help mitigate the curse of dimensionality, enhancing
data visualization and improving model performance [90], [91].

Regression: algorithms that predict continuous numerical values from input features. Linear
Regression, Polynomial Regression, and Ridge Regression establish relationships between variables,
widely used in finance, economics, and environmental modeling [92]-[94].

Regularization: Methods that prevent overfitting by adding a penalty term to the loss function.
Ridge Regression (L2), LASSO (L1), and Elastic Net combine penalties to constrain model complexity,
improving generalization for regression and classification tasks [95].

Clustering: Clustering algorithms group similar data points into clusters. Techniques like
K-Means, Hierarchical Clustering, and DBSCAN are used for exploratory data analysis, pattern
recognition, and market segmentation, identifying natural groupings in data [96], [97].

Instance-Based: Instance-Based learning, such as K-Nearest Neighbors (KNN), makes predictions
based on the closest instances [98].

An organizational chart illustrating the techniques of ML, along with the reviewed algorithms, is
presented in Figure 3. Additionally, other ML algorithms and mathematical methods, such as TLBO
and Dynamic Programming, are incorporated. These methods are included due to their significant
role in optimizing and/or predicting reservoir operational processes.

4. Literature Review

In the past, the optimization of dam and reservoir operations heavily relied on traditional optimization
techniques such as dynamic programming (DP), linear programming (LP), and nonlinear program-
ming (NLP). These methods were foundational in developing operational strategies that aimed to
balance the multifaceted demands on water resources, such as irrigation needs, hydroelectric power
generation, and flood management. However, as the complexity of water management challenges
has grown due to factors like climate change, population growth, and increased environmental
concerns, there has been a significant shift towards more advanced solutions. Currently, the focus
has shifted to utilizing ML algorithms, which offer enhanced predictive capabilities and adaptive
learning opportunities. This modern approach allows for more dynamic and precise management of
reservoir operations, catering to the evolving needs and constraints of water resource management.

4.1 Mathematical Programming
Mathematical programming serves as a cornerstone for optimizing various engineering systems,
particularly in the study and management of water resources. Techniques like dynamic and linear
programming allow for the formulation of optimal solutions to complex problems involving the
allocation and management of water in reservoirs and basins. These methods rely on constructing
mathematical models that can process large datasets to simulate and predict outcomes under different
operational scenarios. By integrating these models with real-world data, engineers and researchers
can devise strategies that enhance efficiency, sustainability, and decision-making accuracy in water
resource management.

The details in Table 1 are a review of mathematical programming applications across different
case studies related to water management. This review elaborates on the optimizers used, the type of
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mathematical programming in this field.




Table

1: Overview of Mathematical Programming Applications in Reservoir Operation.

Ref. | Case study Optimizer Type of data Main Conclusion Remarks
[99] | Finite Dams Dynamic Pro- | Reservoir capacity, discrete | The critical numbers and return functions | Study emphasizes the use of successive ap-
gramming inputs, probability distribu- | were characterized, leading to stopping rules | proximations to determine optimal release
tions for infinite time horizons, improving computa- | rules and critical numbers, focusing on com-
tional efficiency for large problems. putational savings.

[100]| Multipurpose Dynamic Pro- | Seasonal inflows, dis- | Optimal regulation policies were character- | The study extends previous research by incor-

Reservoir gramming charge, and reservoir | ized with efficient bounds for special cases | porating seasonal variations and more com-
volume; piecewise linear, | and conditions for finite and infinite-time hori- | plex return function structures.
concave return functions zon optimality.

[101]| Finite Dams Dynamic Pro- | Reservoir levels, inflow | The study presentsadynamic programming | Highlights the use of critical numbers to for-

gramming data, discrete releases approach to derive optimal release policies | mulate optimal policies and ensure computa-
under varying conditions. tional efficiency.

[102]| Columbia Nonlinear Pro- | Hydroelectric flow data, | The method provided effective optimiza- | Employed a complex penalty formulation to
River Basin gramming power generation capaci- | tion for power generation, balancing power | handle constraints, proving practical for large-

ties deficits across time intervals. scale operations.

[103]| Hypothetical Linear  Pro- | Surface and groundwater | Integrating detailed simulation of surface and | The model effectively uses LP to develop opti-
Basin gramming interaction data groundwater interactions improves conjunc- | mal reservoir operation rules and conjunctive

(LP) tive water management, providing more effi- | use strategies, enhancing water resource man-
cient use of water resources. agement.

[104]| Five-Reservoir | Parallel Reservoir inflow, storage, | The parallel DP algorithm optimized the joint | The algorithm proved to be scalable and ef-
System in | Dynamic release, hydropower gener- | operation of the five-reservoir system, result- | ficient, with wall clock time reduced from
China(Yangtze | Programming | ation, system efficiency ingin a4.96x10% KW h/year increase in energy | 266.83 h to 1.54 h using 350 peer processes.
River Basin) (DP) production. The system provided more se- | RMSE values were not explicitly mentioned,

cure and reliable output production, relieving | but the improvements in operational effi-
stress at river confluence points and enhanc- | ciency and energy production highlight the
ing overall efficiency. algorithm’s effectiveness.

[105]| Kataj and La- | Mixed Integer | Reservoir storage and re- | MILP technique achieves optimal reservoir op- | Results show 15.9% more reservoir storage,

tian and Laar
Dams

Linear  Pro-
gramming
(MILP)

lease data, underground
water usage

eration, minimizing underground water use.

11.6% more outflow, and 21.7% less overflow
compared to historical operations. This leads
to improved hydropower efficiency and in-
creased stored water in reservoirs.
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The studies listed predominantly rely on traditional optimization techniques, which may struggle
with computational efhiciency when applied to complex or large-scale reservoir systems. Accuracy and
availability of data are crucial, and any limitations here can significantly impact model performance.
The rigidity of traditional models like DP, LP, and NLP may not accommodate the dynamic and
uncertain nature of real-world reservoir systems. Simplifications necessary for these models to
function, such as piecewise linear assumptions, may not accurately reflect the intricacies of water
management. Furthermore, the specific focus of each study on particular types of dams or basins
limits the generalizability of the findings across different contexts or geographic locations.

Traditional literature lacks exploration into the integration of ML algorithms, which could
significantly enhance predictive accuracy and adaptability in reservoir management. There is a
notable absence of real-time optimization frameworks capable of handling live data streams for
on-the-fly decision making. Uncertainty in environmental factors and inflows remains insufhiciently
addressed, posing a challenge for robust optimization under varying conditions. Comprehensive
models that simultaneously consider ecological, quality, and socioeconomic factors are scarce. Lastly,
the long-term impacts of climate change on reservoir operations have not been adequately factored
into optimization models, representing a significant gap in current research.

To address the limitations of traditional optimization techniques studied from 1960 to 1980,
current research focuses on integrating advanced ML algorithms to enhance predictive accuracy and
computational efficiency in reservoir management. As we continue to develop real-time optimization
frameworks capable of processing live data streams for immediate decision-making, future research
should prioritize managing environmental variability and inflow fluctuations through comprehensive
uncertainty analysis. Additionally, incorporating ecological, water quality, and socioeconomic
considerations will ensure more holistic and sustainable reservoir management practices. Researchers
need to focus on the long-term impacts of climate change, developing models that can predict and
mitigate these effects over extended periods. Expanding the geographical scope of studies and testing
models on various types of dams and basins will enhance the generalizability and applicability of
findings, ensuring broader relevance and effectiveness in diverse contexts.

4.2 Evolutionary Optimization Algorithms

Evolutionary optimization algorithms are crucial tools in the field of reservoir operation and man-
agement, as they help tackle complex optimization problems that are otherwise intractable using
traditional methods. These algorithms, including genetic algorithms (GA), differential evolution
(DE), and others, are designed to mimic natural evolutionary processes to iteratively search for more
optimal solutions. They have proven particularly effective in managing the multifaceted challenges of
reservoir systems, such as water allocation, sediment management, and ecological flow requirements.
These techniques can adapt to varying conditions and incorporate multiple objectives, making them
ideal for the dynamic and often uncertain environments associated with water resources.

In Table 2, an extensive review of the application of evolutionary optimization algorithms in
reservoir management is detailed. The table explores various case studies where these algorithms
have been employed, highlighting the data types used, the specific optimization problems addressed,
and the outcomes achieved, thus emphasizing the adaptability and efficiency of these algorithms in
optimizing reservoir operations.



Table 2: Applications of Evolutionary Optimization Algorithms in Reservoir Management

Ref. | Case study Optimizer Type of data Main Conclusion Remarks

[106]| Mahabad Dam | DE,GA, TLBO Environmental flows, agri- | DE algorithm performed better than GAand TLBO | DE algorithm shows faster convergence and better
cultural demand, and reser- | in terms of efficiency and meeting agriculturaland | performance in optimizing reservoir operations
voir operations data environmental demands. under tested scenarios.

[107]| Networking CASO and CGA Water levels, inflow data, | CASO was more efficient in converging to optimum | CASO and CGA used for optimizing rule curves;
Reservoirs reservoir simulation data. rule curves than CGA, with a 40% faster convergence | CASO proved to be more efficient, reducing over-
System rate. flow durations significantly.

[108]| Changheba GA, NN, OD, FEM Piezometric head and flow | The inverse modeling successfully identified the hy- | The approach combined neural networks and ge-
Rockfill Dam rate measurements draulic conductivities of foundation rocks and clari- | netic algorithms to reduce computational cost

fied leakage channels. and improve result reliability.

[109]| Bocac Dam GA Dam behavior data, sensor | The adaptive system effectively manages sensor fail- | The system excels in real-time adjustments during

measurements ures by adjusting the regression model in real-time | sensor malfunctions, ensuring robust predictions
to maintain prediction accuracy. despite variable sensor availability.

[110]| Shih-Men Binary-Coded GA, | Water release, reservoir lev- | Genetic algorithms effectively improved the rule | The study showcases the efficiency of real-coded
Reservoir Real-Coded GA els, hydrological data curves, surpassing the performance of existing M-5 | over binary-coded GA, with real-coded providing

curves in terms of water deficit reduction and hy- | slightly more accurate and efficient outcomes.
dropower efficiency.

[110]| Tapu Reser- | Genetic Algorithm | Reservoir operation data, | The genetic algorithm optimized the operationrule | The study demonstrates how GA can effectively
voir (GA) sedimentation rates, histor- | curvesand flushing schedule, improving water man- | handle complex reservoir operations by optimiz-

ical water inflow and out- | agement and reducing sedimentation impacts effi- | ingboth water supply and sediment flushing effi-
flow data ciently. ciency.

[112]| Shih-Men Constrained GA | Reservoir operation data, | The CGA significantly improved performance in | Thestudy demonstrated that CGA could efficiently
Reservoir (CGA) hydrological data, ecologi- | reservoir operations, achieving lower water short- | meet both human and ecological demands by op-

cal base flow requirements | age indices and better ecological flows. timizing operation rules.

[113]| Mula Reser- | Genetic Algo- | Reservoir inflow, Storage, | Theintegrated meta-heuristic approach effectively | The integration of Dynamic Programming with
voir rithms (GA), (PSO), | Demand, Release optimized the reservoir operations policy. DE and | meta-heuristics enhanced the overall perfor-

Differential Evolu- PSO provided the best performance with signifi- | mance, reducing computation time and improv-

tion (DE), Artificial cant improvements in convergence speed and so- | ing the accuracy of the results. RMSE for DE was

Bee Colony (ABC) lution quality. DE achieved the best mean value of | significantly lower compared to other algorithms.
125,825.22 with a standard deviation of 0.07.

[114]| Mohamed V | Genetic Algorithm | Reservoir inflow, Storage, | Theimproved GA model effectively optimized the | The study highlights the significance of the
Reservoir (GA) with a new | Demand, Release operating curves and hedging rules for the multipur- | smoothing constraint in avoiding large fluctua-

objective function
and smoothing
constraint

pose reservoir. The new objective function combin-
ing the maximum annual deficit and the frequency
of shortage provided better performance than the
conventional SSD function. The optimization re-
sulted in reduced vulnerability and improved reli-
ability of water supply, especially under drought
conditions.

tions in operating curves, leading to more practi-
cal and stable reservoir management. RMSE val-
ues were not explicitly mentioned, but the overall
performance metrics showed significant improve-
ments in terms of reduced maximum deficits and
frequency of shortages.
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The studies exhibit limitations, including dependence on specific optimization algorithms that
may not generalize across varying dam operation contexts. Performance metrics are focused on
efficiency and convergence, potentially overlooking robustness to environmental unpredictability.
Real-time data integration shows promise but is limited by sensor data reliability and computational
constraints. While CGA demonstrates ecological consideration, the application to diverse ecosystems
with distinct needs remains untested.

The research lacks comprehensive models accounting for extreme environmental variability and
long-term climate change impacts. There’s an opportunity for algorithms that leverage real-time
data to make predictive adjustments. Integrating socio-economic factors into these models remains
unexplored, as does the synergy between different ML techniques for more holistic management.
Practical field application and validation of these optimized models are not adequately documented.

To overcome these limitations, future research should focus on developing and testing more
generalized optimization algorithms that can adapt to various dam operation contexts. Emphasizing
robustness to environmental unpredictability alongside efficiency and convergence in performance
metrics will provide more comprehensive evaluations. Improving real-time data integration requires
enhancing sensor data reliability and addressing computational constraints to fully leverage real-
time predictive adjustments. Expanding the application of ecological considerations to diverse
ecosystems with distinct needs will ensure broader ecological relevance. Additionally, incorporating
socio-economic factors into optimization models will provide a more holistic approach to dam
management. Exploring the synergy between different ML techniques can enhance the effectiveness
of these models. Finally, conducting practical field applications and thorough validation of optimized
models will bridge the gap between theoretical research and real-world implementation, ensuring
the developed algorithms are robust, reliable, and effective in diverse scenarios.

4.3 Neural networks and Deep learning

Neural networks and deep learning are pivotal in advancing the automation and optimization of
reservoir operations. These technologies leverage large amounts of data to train models that can
predict outcomes and optimize processes far more efficiently than traditional methods. Neural net-
works, including variations like LSTM and convolutional neural networks, are adept at recognizing
patterns in sequential data, making them ideal for time-series forecasting such as predicting reservoir
levels or inflow rates. Deep learning, with its ability to process and learn from complex and high-
dimensional data, enhances decision-making capabilities in real-time operations, accommodating
various operational constraints and environmental considerations.

In Table 3, a detailed exploration of how neural networks and deep learning are employed in the
management of reservoirs is presented. This includes case studies that demonstrate the integration of
these technologies with other optimization techniques, such as genetic algorithms and fuzzy systems,
to enhance predictive accuracy and operational efficiency. The table underscores the transformative
impact of these advanced computational tools in reservoir management, highlighting their roles in
facilitating more informed and strategic decision-making processes.



Table 3: Integration of Neural Networks and Deep Learning in Reservoir Management

Ref. | Case study Optimizer Type of data Main Conclusion Remarks

[115]| Three Gorges | LSTM1DCNN, - | Dam discharge temper- | The study successfully integrates LSTM1IDCNN for | The integration of deep learning with advanced
Reservoir MOACOR (includes | ature data, reservoir | accuratetemperature predictionsand -MOACOR | optimization algorithms enhances the manage-

ACOR) operation data, ecological | for optimizing reservoir operations. ment of ecological and human water needs. ACOR
flow data is specifically employed within -MOACOR to im-
prove solution exploration and robustness by pro-

viding a guided local search strategy.

[116]| Real-time Genetic Algorithm | Reservoir operationdatain- | The integration of GA and ANFIS offers supe- | The study highlights the effectiveness of combin-
Reservoir (GA), Adaptive | cluding water demandand | rior performance in predicting and optimizing | ing GA for optimization and ANFIS for learning op-
Operation Network-based inflow conditions reservoir operations compared to traditional rule | timal release strategies in real-time operations.

Fuzzy Inference curves.
System (ANFIS)

[117]| Shihmen Evolving ANN | Operational data including | The integration of evolving ANNs with GAs opti- | The system allows for handling multiple deci-
Reservoir (Artificial ~ Neural | storage levels, inflow, water | mized operational strategies, leading to more ef- | sion variables, significantly improving operational
Operation Network), Genetic | demands, and energy pro- | fective management of water releases and energy | performance compared to traditional rule-based

Algorithm (GA) duction needs production. methods.
[118]| Barra Bonita | Stochastic Fuzzy | Reservoir operation data, | SFNN successfully optimized the reservoir opera- | The SFNN method effectively incorporates
Reservoir Neural Network | stochastic inflow data, op- | tion by integrating fuzzy sets and neural networks, | stochastic elements and fuzzy logic, improv-
(SFNN) erational objectives outperforming traditional dynamic programming | ing the flexibility and efficiency of reservoir
approaches in handling multiple operational ob- | management under uncertain conditions.
jectives and inflows.

[119]| Bhakra Reser- | Fuzzy Neural | Reservoir inflow, storage, | Theintegration of fuzzy logic and neural networks | The fuzzy neural network showed rapid conver-
voir Network (FNN) release, hydropower gener- | effectively optimizes hydrogeneration scheduling | gence and high accuracy with a mean square error

ation under uncertain inflows. The model captures the | (MSE) of 0.0026 during the test phase. The hybrid
uncertainty in reservoir inflows and provides ro- | system enhances the reliability and efficiency of
bust solutions for maximizing hydropower gener- | reservoir management, handling large numbers
ation. of input features effectively.

[120]| Soyanggang ANFIS  (Adaptive | Monthly dam inflow data, | The ANFIS model successfully predicts monthly | The study demonstrates the effectiveness of com-
Dam Neuro-Fuzzy Infer- | weather forecasting infor- | dam inflow with high accuracy. The integration of | bining neural networks with fuzzy logic to han-

ence System)

mation

qualitative weather forecasting information into
the ANFIS model significantly improves inflow
forecasts compared to using past observed data
alone.

dle both quantitative and qualitative data. The
RMSE values for different model configurations
indicate the model’s high precision, with signifi-
cant improvements when using weather forecast
information.
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The studies show several limitations. The integration of advanced algorithms like LSTM1DCNN
and -MOACOR in the Three Gorges Reservoir study may be computationally complex and resource-
intensive, limiting real-time application. The Real-time Reservoir Operation study’s dependence
on GA and ANFIS requires high-quality input data, which can affect performance. The Shihmen
Reservoir’s evolving ANNs with GAs might face scalability issues with larger datasets. The Barra
Bonita Reservoir’s SENN method, though effective, may struggle with interpretability due to
complexity. Overall, there’s a risk of overfitting, reducing the models’ ability to generalize to
different conditions or reservoirs.

Several gaps are evident. There’s a need for extensive validation of these models across different
reservoirs and environmental conditions to ensure robustness. Integration of real-time data and
adaptive learning is underexplored but crucial for dynamic responsiveness. Combining optimization
techniques with socio-economic factors remains unexplored, which could lead to more holistic
management solutions. The studies lack focus on interpretability and usability for reservoir operators,
needing user-friendly interfaces and clearer outputs. Finally, incorporating climate change impacts
into models is critical for long-term effectiveness in sustainable water management.

To address these limitations, future research should focus on developing lightweight versions of
advanced algorithms by simplifying model architectures and using efficient computation techniques
like pruning and quantization, thereby reducing computational complexity and enhancing real-time
feasibility. Ensuring high-quality input data should be achieved through advanced data preprocessing
techniques such as outlier detection, normalization, and data augmentation, along with deploying
robust data collection systems with high-precision sensors. Additionally, creating scalable versions of
evolving ANNs with GAs is crucial, which can be managed by implementing distributed computing
frameworks and parallel processing techniques for larger datasets. To improve interpretability,
researchers should develop visualization tools to graphically represent model decisions and outcomes,
and incorporate explainable AI techniques like SHAP values or LIME. To reduce overfitting, it is
essential to apply cross-validation techniques such as k-fold and stratified sampling, use regularization
methods like L1 and L2 penalties, and employ ensemble learning strategies like bagging and boost-
ing. Conducting field validation studies across various reservoirs is also recommended, involving
collaboration with local authorities to gather diverse datasets and test models in real-world scenarios.
Incorporating adaptive learning mechanisms, such as online learning algorithms and reinforcement
learning, will enable continuous model updates based on new real-time data, enhancing responsive-
ness to changing conditions. Developing user-friendly interfaces with intuitive dashboards will aid
reservoir operators in decision-making by presenting clear and actionable model outputs. Integrating
climate change scenarios into models involves incorporating climate projections and stress-testing
models against various scenarios to assess long-term impacts, ensuring sustainable water management
strategies. Finally, fostering cross-disciplinary collaboration by forming interdisciplinary research
teams and conducting joint studies will lead to the creation of comprehensive models that incorporate
socio-economic factors for holistic management solutions.

4.4 Bayesian Learning

Bayesian learning offers a powerful framework for developing predictive models, particularly effective
when the amount of data is limited or when incorporating prior knowledge into the model is crucial.
It involves using Bayes’ Theorem to update the probability estimate for a hypothesis as more evidence
or information becomes available. This approach is highly valued for its ability to handle uncertainty
and provide estimations of confidence in the predictions made by the model.



Table 4: Applications of Bayesian Techniques in Environmental Modeling

Ref. | Case study Optimizer Type of data Main Conclusion Remarks

[121]| Nakdong Naive Bayes Classi- | Flow data, water quality | Naive Bayes classifier effectively predicted the | The Naive Bayes classifier provided a quick and
River, South | fier parameters (BOD, T-P), | likelihood of achieving target water quality (TWQ) | efficient method for predicting water quality ex-
Korea drought conditions (SPI), | under varying flow conditions with an accuracy | ceedances, making it a valuable tool for decision-

monthly data of 72.67% for BOD and 76.46% for T-P during vali- | making in watershed management. However, the
dation. The model demonstrated the importance | model’s performance is dependent on the quality
of considering flow and drought conditions along | and comprehensiveness of input data, and further
with water quality parameters for effective water- | improvement can be achieved through data accu-
shed management. mulation and integration of additional variables.

[122]| Serpent Bayesian  Neural | Daily precipitation, temper- | Bayesian Neural Network (BNN) outperformed | BNN showed superior performance by incorporat-
River  basin | Network (BNN) ature, river flow, and reser- | both standard ANN and HBV-96 modelsin simulat- | ing uncertainty estimation and avoiding overfit-
and  Chute- voir inflow data ing mean, peak, and low river flows and reservoir | tingissues. It provided more accurate and reliable
du-Diable inflows. BNN provided reliable predictions with | forecasts compared to traditional ANN and con-
basin, Quebec, confidence intervals, reducing overfittingand han- | ceptual models. However, the model’s complexity
Canada dling parameter uncertainty effectively. and computational cost are higher, requiring sub-

stantial data quality and quantity.

[123]| Shihmen Bayesian Stochastic | Reservoir operation data, | The integration of the Bayesian stochastic model | This approach highlighted significant improve-
Reservoir Model, SVM water quality and quantity | with SVYM resulted in effective reservoiroperations, | mentsin managing water demands and quality,
Operation data enhancing water quality and management. The | providing a robust solution for real-time reservoir

SVM model successfully refined operation rulesby | operations.
predicting optimal release strategies.

[124]| Multi- Dynamic Bayesian | Historical flood data, reser- | The implementation of DBNs for flood control | The study showcases DBNs as a powerful tool for
Reservoir Network (DBN) voir operation models demonstrated effective management of uncertain- | real-time risk management in complex hydrologi-
System ties, significantly improving the prediction and | calsystems, leveraging temporal and spatial data

control of flood risks by allowing for real-time ad- | variability.
justments based on dynamically changing condi-

tions. The method notably enhances the decision-

making process under uncertainty, achieving pre-

dictive accuracies that effectively support opera-

tional adjustments.

[125]| Heihe River | Dynamic Bayesian | Reservoir operation data, | The decision support model reduced the ecolog- | This model demonstrates how the integration
Basin Network (DBN) environmental flow require- | ical flow shortage or overflow rate and the eco- | of Dynamic Bayesian Networks can effectively

ments

nomic loss rate by 5% and 6%, respectively.

manage reservoir operations, reducing uncer-
tainty and improving ecological and economic
outcomes.
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[126]

Zayandehrud
Dam

Bayesian Networks
(BNs)

Annual and monthly dam
inflow data, weather fore-
casting information

BNs efficiently predict annual and monthly dam
inflow, considering uncertainties in the data. The
model shows a 75% prediction accuracy for an-
nual inflow and 83% for monthly inflow.

Bayesian Networks perform better in predicting
inflow ranges rather than numerical values. The
RMSE for annual inflow prediction is lower com-
pared to other models, indicating higher accuracy
and reliability. The integration of K-means cluster-
ing further enhances the model’s performance.

[127]

Tankeng
Hydropower
Station

Dynamic Bayesian
Networks (DBNs)

Reservoir inflow, electric-
ity price, hydropower con-
sumption rate

The DBNs model effectively predicts multi-time-
scale power output and hydropower generation
benefits considering multiple uncertainties. It
provides both forward and backward reasoning
capabilities, enhancing decision-making for hy-
dropower operations.

The DBNs model demonstrated lower RMSE val-
ues compared to traditional models, indicating
higher accuracy. The model also provides com-
prehensive risk assessments for power generation
deficiency and power output deficiency.

[128]

Dez and
Bakhtiari
Reservoirs,

Iran

Bayesian Networks
(BNs), Varying chro-
mosome  Length
Genetic Algorithm
(VLGA-I1)

Monthly inflows, reservoir
storages, downstream wa-
ter demands

BNs are effective for developing monthly operat-
ing rules for cascade systems of reservoirs, signifi-
cantly reducing total damage by 60% compared to
fuzzy and classical regression analyses. The aver-
age relative error in estimating optimal releases is
also reduced by about 30% using BN-based rules.

The integration of VLGA-II with BNs enhances
long-term and short-term operation optimization,
addressing flood control and agricultural water
deficit objectives. The methodology showed sig-
nificantimprovements in operation efficiency and
accuracy, with lower RMSE values compared to
traditional models.

[129]

Dez Reservoir,
Iran

Bayesian Networks
(BNs), Dynamic Pro-
gramming (DP)

Real-time  flood fore-
casting data, reservoir
inflows, downstream water
demands

BNs combined with DP effectively optimize reser-
voir operation for real-time flood control. The inte-
gration of probabilistic forecasting and optimiza-
tion reduces peak reservoir releases and down-
stream flood damages.

The probabilistic approach accounts for uncer-
tainties in inflow forecasts, improving decision-
making under uncertain conditions. RMSE values
for inflow predictions are significantly reduced,
enhancing the accuracy and reliability of flood
control operations.
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In Table 4, the application of Bayesian techniques in various environmental and hydrological
studies is explored. These studies utilize Bayesian methods to enhance prediction accuracy, manage
uncertainty, and optimize decision-making processes in complex systems where data may be sparse
or highly variable. The table demonstrates how Bayesian networks, stochastic models, and neural
networks with Bayesian optimization provide robust solutions for forecasting, resource management,
and environmental conservation.

The studies focusing on Bayesian models, such as Naive Bayes Classifier, Bayesian Neural
Networks (BNN), and Dynamic Bayesian Networks (DBN), present several limitations. One
major limitation is the dependence on high-quality and comprehensive input data, which is crucial
for accurate predictions but often challenging to gather. Bayesian models also require substantial
computational resources, particularly for complex applications like flood prediction and reservoir
inflow forecasting, limiting their scalability for real-time operations. The complexity of these models
makes them difficult to implement and interpret, requiring specialized knowledge that may not be
readily available in all operational contexts. Additionally, while Bayesian models can effectively handle
parameter uncertainty and provide confidence intervals, they may still exhibit sensitivity to initial
assumptions and prior distributions, which can influence the outcomes. Integration of additional
variables to enhance model performance remains a significant challenge due to data availability and
processing constraints.

There are several research gaps identified in the studies focused on Bayesian models. Future
research should focus on developing methods to improve data integration and preprocessing to
enhance the robustness and accuracy of Bayesian models. Exploring hybrid approaches that combine
Bayesian methods with other ML techniques could address the limitations of individual models
and improve predictive performance. There is also a need for more efficient algorithms to reduce
computational demands and enable real-time application. Comprehensive validation across different
hydrological and climatic conditions is essential to ensure the generalizability of these models.
Additionally, incorporating socio-economic factors and climate change impacts into Bayesian models
could provide more holistic solutions for water management. Enhancing the interpretability and
usability of Bayesian models for practical decision-making is crucial, particularly for stakeholders
without specialized knowledge. Addressing these gaps will advance the effectiveness and adaptability
of Bayesian models in reservoir and dam management, ensuring they can meet the evolving challenges
of water resource management.

Recommendations for future research are that future studies should prioritize improving data
integration and preprocessing techniques. This can be done by developing advanced methods
for outlier detection, data normalization, and augmentation, along with deploying robust data
collection systems to ensure high-quality input data. To mitigate the substantial computational
resource demands, it is recommended to explore more efficient algorithms and leverage techniques
like parallel processing and cloud computing, making these models more scalable for real-time
operations. Enhancing the interpretability of Bayesian models is crucial and can be achieved through
visualization tools and explainable Al methods, such as SHAP values or LIME, which can make
model outputs more understandable for practitioners without specialized knowledge. Exploring
hybrid approaches that combine Bayesian methods with other ML techniques, like neural networks
or decision trees, can also address the limitations of individual models and improve predictive
performance. Comprehensive validation of these models across diverse hydrological and climatic
conditions is necessary to ensure their robustness and generalizability. Additionally, integrating
socio-economic factors and climate change projections into Bayesian models will provide more
holistic and sustainable water management solutions. By incorporating adaptive learning mechanisms,
such as online learning and reinforcement learning, Bayesian models can continuously update based
on new data, enhancing their responsiveness to changing conditions. These steps will advance the
effectiveness and adaptability of Bayesian models in reservoir and dam management, ensuring they
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can meet the evolving challenges of water resource management.

4.5 Ensemble Algorithms

Ensemble algorithms are a sophisticated set of techniques in ML that improve predictive performance
by combining multiple models. These methods typically produce more accurate results than any
single model could achieve on its own, by leveraging the strengths and mitigating the weaknesses
of various individual models. Ensemble techniques such as bagging, boosting, and stacking are
utilized to reduce variance, bias, or improve predictions, making them particularly effective for
complex problems where single model predictions may fall short due to overfitting or inherent model
limitations.

In Table 5, an array of ensemble learning models and their applications in hydrological forecast-
ing and water management are detailed. The table illustrates how different ensemble techniques,
including random subspacing, CatBoost, XGBoost, and Random Forest, are applied to enhance
accuracy in predicting water levels, inflow, and other critical environmental factors. These case
studies demonstrate the robustness and versatility of ensemble methods in handling diverse data and
complex prediction tasks.

The studies on ensemble models, including CatBoost, XGBoost, Random Forest (RF), and Stack-
ing Ensemble Mechanism (SEM), exhibit several limitations. A primary limitation is the dependence
on high-quality input data, which is crucial for achieving accurate predictions but can be difficult to
obtain. These models also require extensive hyperparameter tuning and computational resources,
which can be time-consuming and limit their scalability for real-time applications. Additionally,
while ensemble models generally improve predictive performance, they may still exhibit higher
errors for specific inflow ranges, as seen with XGBoost and LGBM for moderate inflow values.
Another limitation is the complexity of interpreting ensemble model outcomes, particularly when
multiple models are combined, making it challenging for non-experts to understand and implement
the results effectively. Furthermore, the integration of various data types, such as climatic indices
and land-use data, necessitates robust data preprocessing and management, which can add to the
complexity and computational burden.

Several research gaps are identified in the studies focused on ensemble models. There is a need for
improved methods to handle data sparsity and variability, ensuring robust predictions across diverse
hydrological scenarios. Future research should explore the development of more efficient algorithms
that reduce computational demands and enhance real-time applicability. Investigating hybrid models
that combine ensemble techniques with other ML methods could further improve predictive accuracy
and robustness. Comprehensive validation of these models across different geographical locations
and climatic conditions is essential to ensure their generalizability. Additionally, incorporating socio-
economic factors and climate change impacts into ensemble models could provide more holistic water
management solutions. Enhancing the interpretability and usability of ensemble model outcomes
for practical decision-making is also crucial. Finally, focusing on integrating additional hydrological
and meteorological variables can improve the models’ ability to capture complex interactions and
predict extreme events more accurately. Addressing these gaps will advance the effectiveness and
adaptability of ensemble models in reservoir and dam management.



Table 5: Applications of Ensemble Learning Techniques in Hydrological Prediction

Ref.

Case study

Optimizer

Type of data

Main Conclusion

Remarks

[130]

Hydroelectric
Reservoir (690
MW)

Ensemble Learning
(Bagging, Boosting,
etc.)

1-hour ahead water level
forecasts, dam metrics

Ensemble models, especially the random sub-
space model, demonstrated high accuracy with an
RMSE of 1.58 and an MAE of 0.24, significantly out-
performing LSTM models in reservoir operation
forecasting.

The study highlights the superiority of ensemble
learning models over LSTM in providing reliable
short-term water level forecasts, crucial for effec-
tive reservoir management and emergency re-
sponse in hydroelectric settings.

[131]

Garudeshwar
Watershed,
India

CatBoost, XGBoost,

Light Gradient
Boosting Machine
(LGBM), Random

Forest (RF), MLP

River inflow data, precipita-
tion data, temperature data

CatBoost demonstrated superior performance
with the highest accuracy across various metrics
including MAE, RMSE, and R? values. CatBoost
managed categorical and continuous variables ef-
fectively, leading to significantly enhanced pre-
diction accuracy. XGBoost and LGBM showed
higher prediction errors for moderate inflow val-
ues above 10,000 m3/s.

The study highlighted the effectiveness of ensem-
ble algorithms in hydrological prediction, with
CatBoost outperforming other models. However,
it also noted that XGBoost and LGBM had higher
errors in certain inflow ranges, indicating a need
for further refinement in these models.

[132]

Gaborone and
Bokaa dams,
Botswana

Random Forest Re-
gression (RFR), MLP
Neural  Network,
Vector AutoRegres-
sion (VAR)

Monthly dam water levels,
rainfall, temperature, cli-
mate indices (DSLP, Al, SOI,
Nifio 3.4), land-use and
land-cover data

RFR and MLP-ANN models showed significant
correlations between dam water levels and cli-
mate factors, with R2 values of 0.890 to 0.926 for
Gaborone and 0.704 to 0.865 for Bokaa. MLP-ANN
provided the best prediction results for dam water
levels, with the highest R? value. The study found
that integrating LULC and climate conditions sig-
nificantly improved prediction accuracy.

While RFR performed better with LULC data, MLP-
ANN excelled with climate factors. The study high-
lighted the effectiveness of hybrid models, such
as VAR-ANN, for capturing both linear and non-
linear relationships in time-series data. However,
accurate predictions depend on high-quality in-
put data and thorough model tuning.

[133]

Sri Ram Sagar
Project (SRSP),
Telangana, In-
dia

Stacking Ensemble
Mechanism (SEM)
incorporating  XG-
Boost, LGBM, and
RF

Daily reservoir inflow, rain-
fall, evaporation, climate in-
dices (GBI,NINO3,NINO 3.4,
NINO 4, GH, DMI)

SEM outperformed individual models with KGE
values of 0.94 (training) and 0.89 (testing), demon-
strating superior prediction accuracy and effective
simulation of peak inflow events.

SEM is highly effective for inflow prediction, but
relies on high-quality input data and thorough
hyperparameter tuning. The study indicates po-
tential for further improvements by incorporating
additional hydrological and meteorological vari-
ables.

[134]

Sirikit Dam

XGBoost

Reservoir inflow, precipita-
tion, and humidity

The XGBoost models demonstrated excellent pre-
dictive performance with a daily RMSE of 8.3666
and a monthly RMSE of 372.6547, significantly re-
fining the accuracy of inflow forecasts. This perfor-
mance highlights the effectiveness of XGBoost in
handling complex hydrological data and enhanc-
ing decision-making in reservoir management.

These results highlight the robustness of XGBoost
in handling complex hydrological data, enhancing
decision-making in reservoir management.
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[135]

Baozhusi
Hydropower
Station

VMD-BILSTM (Varia-
tional Mode Decom-
position - Bidirec-
tional Long Short-
Term Memory)

Daily reservoir inflow data,
weather forecasting infor-
mation

The VMD-BIiLSTM model outperforms traditional
and other hybrid models in predicting daily reser-
voir inflow. It achieves an RMSE of 64.783 and NSE
of 95.7%, indicating high prediction accuracy and
reliability.

The combination of VMD with BiLSTM enhances
the model’s ability to handle non-stationary and
nonlinear inflow data. The ensemble approach re-
duces noise and improves forecast stability, mak-
ing it a preferred tool for reservoir inflow predic-
tion.

[136]

Krasnodar
Krai Rivers
(Pshish  and
Mzymta)

Ensemble Al-
gorithms (M5P,
XGBoost, MLP)

Water level data from au-
tomated hydrological com-
plexes, weather forecasting
information

Ensemble algorithms like XGBoost and MLP show
high prediction accuracy for water levels with sig-
nificant improvement over single models. The op-
timal lead time for predictions varies between 15
to 18 hours for Pshish River, with XGBoost showing
the best performance.

The ensemble approach enhances the robust-
ness of the model by effectively capturing non-
linear relationships and reducing errors. RMSE
values were significantly lower with ensemble al-
gorithms compared to traditional methods, indi-
cating higher reliability and accuracy.

[137]

Carlyle Lake
and Lake
Shelbyville

Random Forest (RF)

Hydrological and meteoro-
logical data, including past,
current, and future inflow,
storage, and precipitation
data

The RF model outperformed other models in pre-
dicting reservoir outflow with the lowest RMSE
values. RF provided a robust and reliable predic-
tion for both Carlyle Lake and Lake Shelbyville,
achieving high accuracy in simulating daily out-
flow patterns.

RF model showed superior performance with
RMSE values of 107.6 (training) and 108.2 (test-
ing) for Carlyle Lake, and 34.5 (training) and 35.9
(testing) for Lake Shelbyville. The ensemble ap-
proach of RF effectively handled large datasets
and complex nonlinear relationships, making it
suitable for long-term reservoir management.
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To address the limitations identified in studies on ensemble models like CatBoost, XGBoost,
Random Forest (RF), and Stacking Ensemble Mechanism (SEM), future research should prioritize
developing methods to handle data sparsity and variability. This can be achieved by implementing
advanced data augmentation techniques and robust preprocessing systems to ensure consistent
input quality across diverse hydrological scenarios. Reducing the computational demands of these
models is essential, which can be accomplished by optimizing algorithms and leveraging parallel
processing and cloud computing for more efficient hyperparameter tuning and scalability in real-time
applications. Exploring hybrid models that combine ensemble techniques with other ML methods,
such as neural networks or Bayesian models, can further enhance predictive accuracy and robustness.
Comprehensive validation across different geographical locations and climatic conditions is crucial
to ensure model generalizability. Integrating socio-economic factors and climate change impacts
into ensemble models will provide more holistic water management solutions. Enhancing the
interpretability of ensemble model outcomes can be done through visualization tools and explainable
AI methods like SHAP values or LIME, making results more accessible to non-experts. Additionally,
integrating various hydrological and meteorological variables, including climatic indices and land-use
data, will improve the models’ ability to capture complex interactions and predict extreme events
more accurately. By addressing these research gaps, the effectiveness and adaptability of ensemble
models in reservoir and dam management can be significantly advanced, ensuring they meet the
evolving challenges of water resource management.

4.6 Decision-tree Algorithms

Decision-tree algorithms are a fundamental class of ML techniques known for their simplicity and
effectiveness in handling classification and regression tasks. These algorithms partition the data into
subsets based on different criteria, using simple decision rules inferred from the features. In the
context of reservoir management, decision trees can analyze various operational data points, such
as hydrological data, inflow rates, and energy production levels, to make informed decisions about
water release schedules, energy generation, and flood control. The advantage of decision trees lies in
their ability to provide transparent, understandable models that can be easily validated and adjusted
according to new data or changing operational requirements.

In Table 6, the utilization of decision-tree algorithms in reservoir management is examined
through several case studies. Each study highlights the adaptability and precision of decision trees in
forecasting and real-time operational decision-making. The table reviews different enhancements to
traditional decision tree models, such as integration with other ML techniques or improvements in
validation methods, illustrating their robustness and reliability in complex environments.

The studies focusing on decision-tree algorithms reveal several limitations. Decision-tree models,
while effective in forecasting and control, can be prone to overfitting, especially with complex and
varied data. This necessitates robust cross-validation techniques, as highlighted in the CART model
study. The reliance on historical and operational data means these models may not always adapt
well to sudden or extreme changes in environmental conditions. Additionally, the scalability of
these models to larger, more diverse datasets can pose a challenge. The studies also point to varying
effectiveness across different scenarios, indicating a need for careful model selection and tuning based
on specific use cases.



Table 6: Applicatians of Decision-Tree Algorithms in Reservoir Management.

Ref. | Case study Optimizer Type of data Main Conclusion Remarks
[138]| Tianshenggiao | Decision Tree Algo- | Hydrological data, en- | The study validated that the decision tree algo- | The C4.5 algorithm outperformed other decision
Cascaded Hy- | rithms(C4.5,CHAID, | ergy production data, | rithm C4.5was the most effective, showing min- | tree algorithms by providing quicker and more ac-
dropower ID3-1V) operational schedules imal error rates in forecasting generation sched- | curate predictions for hydro scheduling, enhanc-
Plants ules for cascaded hydropower plants. ing operational efficiency.
[139]| Rizhao Reser- | Decision Tree (C4.5) | Reservoir operation data, | The DT-based method enabled effective real-time | The study highlights the application of DT-based
voir rainfall, inflow data reservoir flood control operation, demonstrating | rules in real-time operations, improving the han-
adaptability and the ability to guide operational | dling of dynamic inflow scenarios and ensuring
decisions efficiently. operational adaptability.
[140]| Jiroft Dam ANN with PSO and | Piezometric water level, | ANN-PSO showed the best performance for | These models demonstrate varying degrees of ef-
HS, MLR, Decision | reservoir inflow, evapo- | Piezometer20and Piezometer 28 with correlation | fectiveness, with ANN-PSO generally outperform-
Trees (CDT, RDT) ration rates, sluice gate | coefficients (R) of 0.990 and 0.945 respectively; | ingothersin terms of prediction accuracy for spe-
outflow, intake outflow, | MLR provided optimal results for Piezometer 30 | cific piezometers.
total outflow with an R of 0.945.
[141]| Shasta Lake Dynamic Merging | Hydropower release data, | The DMerge method outperformed traditional de- | DMerge efficiently integrates outputs from vari-
(DMerge), Decision | hydrological variables, cli- | cision tree methods (AdaBoost, RF, Extra Trees), | ous decision tree models, dynamically adapting
Trees (AdaBoost, | mateindices demonstrating superior accuracy in simulating hy- | to changesin data inputs and model performance,
Extra Trees) dropower discharge with a CORR of 0.959, RMSE of | enhancing prediction accuracy.
551.169 m>/s, and KGE of 0.934 during validation.
[142]| Major Califor- | CART  combined | Reservoir operation data, | The enhanced CART model with shuffled cross- | The use of shuffled cross-validation in CART signifi-
nia Reservoirs | with Shuffled Cross- | hydrological data validation outperformed both the standard CART | cantly reduces the risk of overfitting and improves
Validation, Random and Random Forest models in simulating reser- | the model’s ability to generalize across different
Forest voir outflows, particularly in capturing peak flow | reservoir conditions.
events more accurately.
[143]| Jiroft Dam, | Classification and | Evaporation data, dam in- | Both CART and CHAID models were effective in | Decision Tree algorithms like CART and CHAID are
Iran Regression  Tree | putwatervolume,damout- | predicting water sales revenue. The CART model | highly suitable for modeling economic features
(CART), Chi-squared | put water volume performed better in terms of accuracy, with a | of water revenue, providing detailed decision-
Automatic  Inter- lower RMSE of 649.97 during the training phase | making support. The RMSE values indicate that
action Detector and 894.25 during the testing phase. CHAID | thesemodelscan predict revenue with reasonable
(CHAID) showed slightly less accuracy with RMSE values of | accuracy.
630.005 and 834.60 for training and testing phases,
respectively.
[144]| Fill Dam (spe- | Decision Tree Analy- | Seepage data, water level, | Decision Tree Analysis using the CART algorithm | The model demonstrated high accuracy in predict-
cificname not | sis (CART) daily rainfall, antecedent 5- | effectively models the relationship between seep- | ingseepage under varying conditions. RMSE val-
provided) day rainfall age, water level, and rainfall. The study classi- | ues were not explicitly mentioned, but the results

fied seepage data into rainfall-free and rainfall-
occurring groups, identifying key variables impact-
ing seepage rates.

indicated a significant reduction in prediction er-
rors. The approach provides clear insights into
the factors affecting seepage, aiding in effective
dam management.
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[145]

High Aswan
Dam  Reser-
voir, Nile
River

Policy Tree Opti-
mization Model

Inflow data, outflow data,
evaporation data, historical
reservoir level data

The policy tree optimization model effectively op-
timizes reservoir operations by balancing flood
control, water supply, and hydropower gener-
ation. The model demonstrates significant im-
provements in operational efficiency, reducing
overflow incidents and enhancing water storage
management.

The Decision Tree approach used in the policy tree
model provides a robust framework for making
informed operational decisions. RMSE values in-
dicate high accuracy in predicting reservoir levels
and optimizing water release policies, leading to
more reliable reservoir management.
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Several research gaps are evident in the decision-tree algorithm studies. There is a need for
improved methods to prevent overfitting and enhance the generalizability of these models across
different reservoir conditions. Integrating real-time data streams and adaptive learning mechanisms
can improve model responsiveness to dynamic changes. Further exploration into hybrid models
combining decision trees with other ML techniques, such as ensemble or neural network methods,
could enhance predictive accuracy and robustness. Comprehensive validation across different ge-
ographical and climatic conditions is essential to ensure model reliability. Finally, incorporating
socio-economic and climate change factors into decision-tree models would provide more holistic
and sustainable water management solutions.

To address the limitations identified in studies focusing on decision-tree algorithms, future
research should consider several innovative approaches. Developing decision-tree algorithms that
incorporate uncertainty quantification can improve robustness in the face of sudden environmental
changes, which can be achieved by integrating probabilistic methods that provide confidence in-
tervals for predictions. Utilizing transfer learning techniques can help these models adapt to new
datasets with limited historical data, enhancing applicability across diverse scenarios. Implement-
ing advanced feature selection methods, such as genetic algorithms or mutual information-based
techniques, can identify the most relevant variables and reduce model complexity. Exploring multi-
objective optimization can balance trade-offs in water management, such as efficiency, sustainability,
and economic factors, thereby developing more comprehensive decision-making frameworks. Ad-
ditionally, creating modular and interoperable software platforms for decision-tree models will
facilitate integration with existing water management systems, enhancing usability for practitioners.
Encouraging participatory modeling involving stakeholders can ensure models address practical
needs and incorporate valuable local knowledge. Lastly, focusing on interpretable ML methods, such
as rule-based models derived from decision trees, will make results more accessible to non-experts.
By adopting these strategies, future research can enhance the robustness, adaptability, and practical
applicability of decision-tree algorithms in reservoir management.

4.7 Regularization

Regularization techniques in ML are crucial for improving model performance by reducing overfit-
ting, enhancing generalization to unseen data, and simplifying models by penalizing complexity.
These techniques adjust the learning process to discourage complex models unless the data pro-
vides sufficient support for such complexity. Common regularization methods include LASSO
(Least Absolute Shrinkage and Selection Operator), Ridge Regression, and Elastic Net, which com-
bine the penalties of LASSO and Ridge. These methods are particularly useful in scenarios with
high-dimensional data or when the risk of overfitting is substantial.

In Table 7, the role of regularization techniques in managing and optimizing reservoir operations
is detailed. The table showcases various case studies where regularization methods have been
integrated with other ML models to enhance predictive accuracy and operational efhciency in
reservoir management. Each entry exemplifies how these techniques not only improve model
predictability but also help in handling large datasets, managing sparsity, and maintaining robustness
under varying operational conditions.



Table 7: Impact of Regularization Techniques on Reservoir Management Models.

Ref. | Case study Optimizer Type of data Main Conclusion Remarks

[146]| Flood Em- | Elastic Net (EN), | Electrical impedance | The hybrid method combining EN with ANN sig- | While EN effectively reduces input data dimen-
bankments ANN, Gauss- | tomography data, conduc- | nificantly improved the accuracy of the recon- | sions, the performance is highly dependent on
Monitoring Newton, Level | tivity measurements structed images, achieving high-resolution imag- | the quality of the initial measurements, and the

Set ing of flood embankments with an R-squared | approach may be computationally intensive.
value of 0.9993 in the testing set.

[147]| Kanayama Elastic Net (EN), | Hydrological data, rainfall | The EN model achieved high prediction accu- | EN effectively handled sparse data and improved
Dam and | Fully Connected | data,inflow data racy with Nash-Sutcliffe (NS) coefficients of 0.7 or | the accuracy of inflow predictions without the
Satsunaigawa | Neural Network greater, demonstrating robustness in predicting | need for highly accurate predicted rainfall. How-
Dam (FCNN), Recurrent dam inflow during severe floods. ever, its performance can be affected by the qual-

Neural Network ity and resolution of input data.
(RNN), Random
Forest (RF)

[148]| Texas Reser- | LASSO, Adaptive | Reservoirlevels, storage ca- | LASSO methods, particularly adaptive LASSO, ef- | The study demonstrates LASSO’s capability to im-

Voirs LASSO, Group | pacities, conservation pool | fectively identified key predictors for reservoir lev- | prove model interpretability and prediction accu-
LASSO heights els, achieving a high predictive accuracy with an | racy, although its performance may vary with the
Adjusted R? of 0.9112 and reducing the model | quality of the input data and the specific configu-

complexity by eliminating irrelevant variables. ration of reservoir characteristics.

[149]| ColoradoRiver | Least Absolute | Streamflow data, dam at- | LASSO regression identified that 63% of the varia- | The study emphasizes the need for basin-wide
Basin Shrinkage and | tributes, fish biodiversity | tionin flow alteration was explained by network- | reoperation strategies to mitigate flow alteration

Selection Operator | metrics level attributes and 37% by local dam properties. | and its effects on biodiversity. Limitations include

(LASSO) This indicates that the location and cumulative | the potential impact of smaller, unaccounted-
upstream regulation are more significant in deter- | for dams and the challenges of fully capturing
mining flow alteration impacts. climate-driven changes.

[150]| Sedre River, | LASSO combined | Streamflow data, histor- | The MSGP-LASSO model significantly improved | The hybrid model effectively handles complex hy-
Turkey with Multi-Stage Ge- | ical monthly streamflow | streamflow forecasting accuracy, achieving an | drological data, but the presence of negative pre-

netic Programming | records NSE of 0.64 during the training period and 0.59 dur- | dictions in low-flow periods indicates the need for
(MSGP) ing the testing period, demonstrating a marked | further refinement.
improvement over traditional GP models.

[151]| Tennessee LASSO, FCM (Fuzzy | Monthly streamflow, rain- | The LASSO-FCM-DBN model significantly im- | The hybrid model’s performance may be affected
River Basin, | C-means), DBN | fall, SST, climate indices proved streamflow prediction, achieving an R> | by the quality and granularity of input data, and
USA (Deep Belief Net- of 0.86 and RMSE of 305 during validation, demon- | further refinement may be required for low-flow

work)

strating higher accuracy and stability compared
to traditional ANN models.

predictions.
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[152]

Cahora Bassa
Dam, Mozam-
bique

LASSO, XGBoost,
ELM, SVR, MARS,
GWO

Streamflow data, rainfall,
evaporation, humidity

The XGBoost-LASSO hybrid model outperformed
other models, achieving an RMSE of 0.124 and an
NSE of 0.961 for one-day-ahead predictions, high-
lighting its efficiency in streamflow forecasting.

While the XGBoost-LASSO model showed high
accuracy, the complexity of integrating multiple
models and tuning parameters requires signifi-
cant computational resources. Further research
may be needed to refine the model for different
hydrological conditions.

[153]| Tennessee LASSO, EEMD, DBN Monthly streamflow data, | The EEMD-Lasso-DBN model significantly im- | The combination of EEMD and LASSO for predic-
River Basin precipitation, SST, atmo- | proved the accuracy of monthly streamflow fore- | tor selection and DBN for prediction provides a
spheric circulations casting, achieving an R? of 0.922 and an RMSE of | robust framework for streamflow forecasting, but
158 during calibration, and an R? of 0.885and an | the model’s complexity and computational de-

RMSE of 189 during validation. mands are high.

[154]| Three-River Lasso-DBN- Monthly streamflow data, | The Lasso-DBN-Bootstrap model significantly im- | Regularization via Lasso enhances the predic-
Headwaters Bootstrap  (Least | weather forecasting infor- | proves the performance and stability of stream- | tor selection process, reducing overfitting and
Region (TRHR) | Absolute  Shrink- | mation flow forecasting. It effectively screens predictors, | improving model interpretability. The integra-

age and Selection models complex relationships, and assesses fore- | tion with DBN and Bootstrap methods further en-
Operator, Deep casting uncertainty. The model outperforms tradi- | hances the robustness and reliability of forecasts.
Belief ~ Networks, tional forecasting methods, achieving lower RMSE | The RMSE values indicate a substantial improve-
Bootstrap) and higher accuracy. ment over conventional models.

[155]| Haihe River | Lasso Regulariza- | Streamflow data, precipita- | The Lasso Regularization method significantly en- | The Lasso method effectively reduces the dimen-

Basin tion integrated with | tion, temperature, humid- | hances the performance of LSTM, TTS, and RF | sionality of input features, leading to improved

LSTM, TTS, RF ity, wind speed models by selecting key features and reducing | model accuracy and generalization. The Lasso-
overfitting. The Lasso-LSTM model shows supe- | LSTM model achieves an NSE of 0.84 on the test
rior stability and generalization capabilities in | set, with lower RMSE values compared to models
streamflow prediction. without Lasso integration.

[156]| ZambeziRiver | Elastic Net Regular- | Streamflow data, precipita- | The Elastic Net Regularization (EN) model signifi- | The EN model demonstrated superior perfor-

Basin, Cahora-
Bassa Dam,
Mozambique

ization (EN)

tion, evaporation, relative
humidity

cantly enhances the predictive capabilities of ML
models for streamflow forecasting. It effectively
selects relevant features and prevents overfitting,
leading to improved accuracy in flow predictions.

mance, with lower RMSE values compared to tradi-
tional models, indicating high accuracy in predict-
ing streamflow. The integration of EN with other
ML models provided robust and reliable forecasts,
crucial for reservoir management.
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The studies focused on regularization models, including Elastic Net (EN), LASSO, and their
combinations with other techniques, exhibit several limitations. The effectiveness of these models
is highly dependent on the quality and completeness of the input data, which can be variable and
sparse. Regularization methods like EN and LASSO can help mitigate overfitting but may struggle
with extremely noisy or incomplete datasets. Hybrid models combining regularization with other
techniques, such as ANN or DBN, can be computationally intensive and complex to implement,
potentially limiting their practical application. Additionally, these models may require extensive
tuning of hyperparameters, and their performance can be sensitive to the specific configuration of
reservoir characteristics.

The studies reveal several research gaps in the application of regularization models. There is a
need for improved methods to handle data sparsity and noise, ensuring the robustness of the models
across diverse scenarios. Further exploration into real-time data integration and adaptive learning
mechanisms could enhance the responsiveness and adaptability of these models to dynamic changes
in reservoir conditions. Developing more efficient and user-friendly techniques for hyperparameter
tuning is essential to simplify the implementation and improve the performance of hybrid models.
Comprehensive validation of these models across different geographical locations and environmental
conditions is necessary to ensure their generalizability. Finally, incorporating socio-economic and
climate change factors into regularization models could lead to more holistic and sustainable water
management solutions.

To shrink the limitations of regularization models such as Elastic Net (EN) and LASSO, future
research should focus on several key areas. Developing methods to incorporate uncertainty quantifi-
cation into regularization models can provide more robust predictions under varying data quality and
completeness, using techniques like Bayesian regularization. Implementing ensemble methods that
combine multiple regularization models can help mitigate the impact of noisy or incomplete datasets
by leveraging the strengths of different algorithms. Creating modular frameworks that allow easy
integration of regularization models with other ML techniques can reduce computational complexity
and facilitate practical application. Exploring the use of meta-learning approaches can streamline the
process of hyperparameter tuning, making it more efficient and less dependent on extensive manual
intervention. This can be achieved by developing meta-models that learn the optimal hyperparameter
configurations based on past experiences. Additionally, developing interactive tools that allow users
to visualize and interpret the influence of hyperparameters on model performance can enhance
usability. Research should also focus on the development of adaptive regularization techniques
that dynamically adjust the regularization strength based on real-time feedback from the model’s
performance, which can be implemented through reinforcement learning algorithms. Ensuring
comprehensive validation of these models across various geographical locations and environmental
conditions is crucial, which can be achieved by establishing international collaborations and data-
sharing platforms. Lastly, incorporating multi-criteria decision analysis into regularization models
can provide a more balanced approach to water management by considering various conflicting
objectives such as economic, environmental, and social factors. This can be done by integrating
decision-support systems that allow stakeholders to weigh different criteria and assess trade-offs in
model predictions. By addressing these areas, future research can enhance the robustness, flexibility,
and practical utility of regularization models in reservoir management.

4.8 Dimensionality Reduction

Dimensionality reduction is a critical process in data preprocessing, especially in environments
dealing with large datasets, such as those common in reservoir management and water quality
monitoring. Techniques like Principal Component Analysis (PCA), Factor Analysis (FA), and
Discriminant Analysis (DA) are used to simplify datasets by reducing the number of variables under
consideration. This not only helps in enhancing computational efficiency but also improves model
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performance by focusing on the most relevant features. These methods are particularly valuable in
environmental science and hydrology, where high-dimensional data can include a wide range of
physical, chemical, and biological parameters.

In Table 8, the application of various dimensionality reduction techniques in the analysis of water
quality and reservoir operations is explored. The table presents case studies detailing how these
methods have been effectively utilized to manage the complexity of environmental data, allowing for
more efficient processing and clearer insights into water management challenges. Each case study
illustrates the method used, the type of data processed, and the significant outcomes of applying
dimensionality reduction, thereby demonstrating their utility in making environmental data more
manageable and interpretable.

The studies on dimensionality reduction models exhibit several limitations. The effectiveness of
methods like PCA, FA, and MDA is highly dependent on the quality and completeness of input data,
which can vary and may limit the models’ performance. These techniques can oversimplify complex
datasets, potentially overlooking subtle but important variations. The computational resources
required for implementing these models, especially when dealing with large and multi-dimensional
data, can be significant. Additionally, while dimensionality reduction can optimize monitoring
networks and reduce data collection costs, it might not capture all relevant variations, leading to
potential information loss. The applicability of these models can also vary across different hydrological
and geographical contexts.

Several research gaps are evident in the studies on dimensionality reduction models. There is
a need for improved methods to handle data sparsity and variability, ensuring robustness across
diverse scenarios. Further exploration into integrating real-time data streams and adaptive learning
mechanisms could enhance the models’ responsiveness to dynamic changes in environmental con-
ditions. Developing hybrid models that combine dimensionality reduction techniques with other
ML methods could improve predictive accuracy and robustness. Comprehensive validation across
different geographical locations and climatic conditions is essential to ensure generalizability. Addi-
tionally, incorporating socio-economic factors and climate change impacts into these models could
provide more holistic and sustainable water management solutions. Enhancing the interpretability
and usability of these models for practical application in monitoring and decision-making is also
crucial.

To address the challenges associated with dimensionality reduction models like PCA, FA, and
MDA, future research should explore several innovative strategies. First, developing context-aware
preprocessing techniques tailored to specific environmental conditions can significantly enhance
model performance. Additionally, employing advanced methods such as manifold learning and
nonlinear dimensionality reduction can capture complex patterns without oversimplification. Reduc-
ing computational overhead through hardware acceleration and efficient algorithmic optimizations
will make these techniques more practical for large-scale applications. Furthermore, integrating
multi-source data fusion from various sensors and databases can provide a more comprehensive
dataset, thereby improving robustness. Exploring the synergy between dimensionality reduction and
unsupervised learning methods, such as clustering or anomaly detection, can offer new insights and
enhance predictive capabilities. Real-time adaptation through the incorporation of streaming data
and online learning algorithms will ensure models remain responsive to new information. Extensive
field validation, facilitated through international collaboration, will be crucial for testing these models
across diverse hydrological and geographical contexts. Moreover, incorporating socio-economic
indicators and climate projections will enable the development of more holistic and future-proof
water management solutions. Finally, developing intuitive visualization tools and interactive plat-
forms will make these models more accessible to decision-makers, allowing for better integration
into existing monitoring and management frameworks. By focusing on these approaches, future
research can overcome current limitations and significantly improve the utility of dimensionality
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reduction models in environmental management.



Table 8: App[ications QfDimensionalily Reduction Techniqucs in Water Qualily and Reservoir Management.

Ref. | Case study Optimizer Type of data Main Conclusion Remarks
[157]| Jezioro Kowal- | Principal Compo- | Water quality parameters | PCA and FA effectively reduced the dimensional- | The study demonstrates that multivariate statis-
skie Reservoir | nentAnalysis (PCA), | (dissolved oxygen, BOD, | ity of the dataset, retaining key variables that ex- | tical methods can optimize monitoring networks
Factor Analysis (FA), | COD, pH, conductivity, | plained over 70% of the variance in water quality | by reducing the number of measurement control
CA, DA hardness) parameters. points without significant loss of information. The
method’s effectiveness is limited by the initial
quality and distribution of the input data.
[158]| Firuzkuh Mixture  Discrimi- | Sediment control factors, | MDA effectively classified and identified signifi- | The study demonstrates the efficacy of MDA in
County, Iran nant Analysis (MDA), | topographic, hydrological, | cantfactors for sediment control, achievinga high | handling complex, multi-dimensional data for en-
RF, SVM, MARS, EN geological, and anthro- | classification accuracy of 93.7%. Although MDA | vironmental modeling, but highlights that Elastic
pogenic data performed well, the Elastic Net model, despite be- | Net’s ability to regularize and select features con-
ing a regularization algorithm, had superior per- | tributed to its superior performance. However,
formance with an accuracy of 96.6%, making it | both methods require high-quality input data and
the most accurate in predicting suitable sites for | computational resources.
check dams.
[159]| River Tisza, | Combined Cluster | Water quality parameters | CCDA effectively reduced the dimensionality of | The study highlights the capability of CCDA in op-
Hungary and Discriminant | (e.g., dissolved oxygen, | the dataset by identifying homogeneous groups, | timizing monitoring networks by reducing redun-
Analysis ~ (CCDA), | BOD, pH, nutrients) from | leading to the potential reduction of sampling lo- | dancy and cost, but its effectiveness is dependent
PCA, CA 14 sampling sites over 30 | cations from 14 to 11, improving monitoring effi- | on the quality and consistency of the input data.
years ciency while retaining 70% of the variance in water
quality parameters.
[160]| Kralkizi, Dicle, | PCA, Factor Analy- | Water quality parameters | PCA and FA reduced the data set’s dimensional- | While the multivariate techniques effectively sim-
and Batman | sis(FA),ClusterAnal- | (e.g., dissolved oxygen, | ity,identifying five key factors that explained 80% | plified the dataset, PCA/FA did not significantly
Dam  Reser- | ysis (CA), Discrimi- | BOD, COD, pH, conductivity, | of the total variance. DA was effective for data | reduce the number of measured parameters, indi-
voirs, Turkey nant Analysis (DA) nutrients) collected over a | reduction, identifying nine parameters for tem- | cating a need for continued comprehensive moni-
year poral variations and eight for spatial variations, | toring to capture all relevant variations in water
allowing for a reduction in sampling efforts while | quality.
maintaining data integrity.
[161]] La Grande | Principal Compo- | Multireservoir power sys- | PCAand NPCA reduced the original problem com- | The reduced model accounted for 96.6% of the

River, Tono
Dam (Japan),
Various
Reservoirs,
Multireservoir
Systems

nent Analysis (PCA),
Non-negative Prin-
cipal Component
Analysis (NPCA)

tem trajectories, Stochas-
tic long-term multireservoir
operation, Reservoir stor-
age trajectories

plexity by focusing on major components, making
it solvable by dynamic programming. NPCA-based
approach provided a better representation of the
Pareto front compared to selecting a subset of ob-
jectives. PCA significantly reduced the number
of state variables, making dynamic programming
feasible for large-scale problems. PCA reduced di-
mensionality by focusing on components explain-
ing the majority of variance, ensuring efficient op-
timization.

sample variance; PCA explained a high percent-
age of variance while maintaining interpretabil-
ity. NPCA demonstrated superior solution diver-
sity and consistency with improved RMSE perfor-
mance. PCA accounted for 85% of variance with
first components, greatly reducing computational
complexity. PCA effectively reduced the problem
size while maintaining a high level of variance ex-
planation, improving model efficiency.
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[162]| Tono  Dam, | Non-negative Prin- | Daily operation data of a | The NPCA aggregates the original multiple objec- | The NPCA-based approach provides a better rep-
Japan cipal Component | multi-purpose water reser- | tivesinto a reduced number of principal compo- | resentation of the Pareto front, ensuring consis-
Analysis (NPCA) voir nents. This transformation aids in optimizing the | tency and solution diversity. It effectively reduces
decision-making process with lower dimensional | computational complexity.
objectives.

[163]| South Yellow | Principal Compo- | Well log data including | PCA improved the performance of LSSVM and | PCA-LSSVM achieved superior performance met-

Sea Basin nent Analysis (PCA), | gamma ray (GR), sonic | ANFIS-SCM by reducing model complexity and | rics with an RMSE of 0.022 during training and
Least Squares Sup- | travel time (DT), spon- | preventingoverfitting. PCA-LSSVM outperformed | 0.059 during testing. The use of PCA reduced di-
port Vector Machine | taneous potential (SP), | PCA-ANFIS-SCM in predicting water saturation | mensionality while maintaining 80.3% of the vari-
(LSSVM) resistivity (RT), neutron | with higher accuracy and generalization ability. ance, enhancing the overall efficiency and relia-

porosity (NPHI) bility of the models.

[164]| Reservoir Principal Com- | Multireservoir storage tra- | PCA effectively reduces the dimensionality of the | The PCA approach demonstrated significant im-
management ponent  Analysis | jectories, inflows state variables in the stochastic long-term mul- | provement in computational efficiency while
in Quebec, | (PCA) tireservoir operating problem. The PCA-based ap- | maintaining high accuracy in reservoir manage-
Canada (La proach reduces the original 10-state variablesto | ment. The eigenvalues and corresponding vari-

Grande River)

4 principal components, accounting for 96.6% of
the sample variance.

ance contributions show that the majority of the
variance is captured by a few principal compo-
nents. RMSE values indicate high predictive accu-
racy.
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4.9 Clustering

Clustering algorithms are a fundamental aspect of unsupervised learning used to group a set of
objects in such a way that objects in the same group (or cluster) are more similar to each other
than to those in other groups. This technique is invaluable in various fields such as ML, pattern
recognition, image analysis, and bioinformatics, where it helps to identify natural groupings among
data without prior knowledge of the group definitions. Clustering is particularly useful in exploratory
data analysis, allowing researchers and analysts to discover underlying patterns, group subjects with
similar behaviors, and segment data into distinct parts for further study or targeted action.

In Table 9, a variety of clustering methods used across different studies is highlighted. These
methods include K-means, Hierarchical Clustering, and more sophisticated two-step approaches
that enhance data analysis capabilities in different contexts. The table showcases how these clus-
tering techniques are applied to hydrological data, environmental management, and infrastructure
monitoring, demonstrating their effectiveness in extracting meaningful information from complex
datasets.

The studies focusing on clustering models, such as K-means, hierarchical clustering, and two-step
clustering, reveal several limitations. Firstly, these models are highly dependent on the quality and
completeness of the input data, which can affect the accuracy of the clustering results. The selection
of initial centroids and the number of clusters significantly influences the performance of methods
like K-means, making them sensitive to initialization parameters. Furthermore, the computational
intensity required for clustering large datasets can be substantial, limiting real-time application and
scalability. Another limitation is the complexity of interpreting clustering outcomes, particularly for
non-expert users, which may hinder practical implementation. Additionally, clustering techniques
may not capture the temporal dynamics of hydrological data effectively, necessitating the integration
with time-series models for comprehensive analysis.

Several research gaps are evident in the studies focused on clustering models. There is a need for
improved methods to handle data variability and sparsity, ensuring the robustness of clustering results
across diverse environmental scenarios. Future research should explore hybrid models that combine
clustering with other ML techniques to enhance predictive accuracy and robustness. Developing
more efficient algorithms that can handle large datasets and provide real-time clustering is crucial.
Comprehensive validation of these models across different geographical locations and climatic
conditions is necessary to ensure their generalizability. Incorporating socio-economic factors and
climate change impacts into clustering models could provide more holistic and sustainable water
management solutions. Enhancing the interpretability and usability of clustering results for practical
decision-making is also important. Additionally, focusing on integrating clustering methods with
time-series analysis can improve the models’ ability to capture temporal dynamics in hydrological
data. Addressing these gaps will pave the way for more effective and adaptable clustering models in
reservoir and dam management.



Table 9: Utilization of Clustering Techniques in Data Analysis.

Ref. | Case study Optimizer Type of data Main Conclusion Remarks

[165]| Brazilian K-means Clustering | Monthly streamflow data, | The application of K-means clustering in the | The K-means clustering approach proved efficient
Hydroelectric reservoir inflows monthly streamflow generation model effectively | in handling large datasets and reducing computa-
System reduced computational effort in the mid-term op- | tional load, making it suitable for complex hydro-

eration planning model. Clustering techniques | electric systems. However, the quality of cluster-
enabled the selection of representative inflow se- | ing results depends on the accurate selection of
quences from a large set, preserving the statistical | initial centroids and the number of clusters.
properties of the original data.

[166]| River Brahma- | K-means Clustering, | Rainfall data, runoff data, | K-means and AHC clustering techniques effec- | Clustering techniques enhanced the understand-
putraBasin, In- | Agglomerative river discharge data tively identified patterns in the hydrological data, | ingof hydrological patterns, improving the predic-
dia Hierarchical Clus- leading to improved runoff forecasting models. | tive capabilities of regression models. Accurate

tering (AHC),ARIMA, The ARIMA model achieved an average R? value of | clustering depends on proper selection of initial
SARIMA 0.92 across eight models, indicating high accuracy | parameters and sufficient data quality. The com-
in runoff prediction. bined approach of clustering and regression anal-
ysis is highly useful for water resources planning

and development.

[167]| Narmada Hierarchical Cluster- | Rainfall data, discharge | Hierarchical Clusteringidentified key rain gauge | The HC approach effectively identified significant
River Basin, | ing (HC), Thiessen | data, Digital Elevation | stations, optimizing the rain gauge network by | rain gauge stations, enhancing the efficiency of
India Polygon Method Model (DEM) data grouping stations with similar rainfall patterns. | flood forecasting models. However, the method

This resulted in improved flood forecasting accu- | requires high-quality input data and computa-
racy with an NSE value of 0.963 and an R? 0f 0.9636 | tional resources, and its performance may be af-
for 2012. fected by missing or incomplete data.

[168]| Eyvashan K-means Clustering, | Settlement data from preci- | K-means and two-step clustering effectively iden- | Clustering methods enhanced the interpretabil-
Earth  Dam, | Two-Step Clustering | sioninstruments, water lev- | tified settlement patterns, allowing forimproved | ity of settlement data, helping to identify critical
Iran els, embankment levels monitoring and prediction of settlement behavior. | areas. However, the effectiveness of clustering is

The maximum settlement of 809 mm occurred at | limited by the quality and resolution of input data,
the mid-level of the dam core, which was 1.2% of | and the method requires long-term monitoring
the dam height. data for accuracy.

[169]| Eyvashan K-means Clustering, | Settlement data from preci- | The study showed that spatiotemporal cluster- | Clustering methods enhanced the interpretabil-
Earth  Dam, | Two-Step Clus- | sioninstruments, embank- | ing, combined with Al models, significantly im- | ity and accuracy of settlement predictions. The
Iran tering, RF, MARS, | ment levels, water levels proves the prediction of dam settlement behavior. | integration with Al models provides robust results

GMDH K-means clustering identified critical settlement | for monitoring dam stability. However, the ap-

patterns, with a maximum observed settlement
of 809 mm (1.2% of the dam height) at the middle
level of the dam core. GMDH demonstrated supe-
rior predictive performance with RMSE of 1.6947
and DC of 0.9837.

proach requires high-quality input data and com-
putational resources.
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[170]

Xinyihe Reser-
voir, China

K-means Clustering

Rainfall, inflow, water lev-
els, sediment concentra-
tion

K-means clustering was used to identify patterns
in sediment concentration data. This method ef-
fectively grouped similar data points, enhancing
the understanding and management of sediment
dynamics in the reservoir.

The application of K-means clustering signifi-
cantly improved the model’s ability to predict sed-
iment concentrations. The RMSE values indicate
higher accuracy and reliability in sediment con-
centration forecasts.

71

Streamflow
Forecasting
in  Semi-arid
Region, Tigris
River, Iraq

K-means Clustering,
Support Vector
Regression  (SVR),
Generalized Re-
gression Neural
Network (GRNN)

Streamflow data, rainfall,
temperature

K-means clustering was used to classify the in-
put data into different clusters before applying
SVR and GRNN for forecasting. This approach im-
proved the performance of the models by identi-
fying and grouping similar patterns in the data.

The integration of K-means clustering with SVR
and GRNN resulted in a significant reduction in
RMSE values, demonstrating the effectiveness of
clustering in improving model accuracy. The ELM
model outperformed the SVR and GRNN models,
with RMSE reductions of 21.3% and 44.7%, respec-
tively.
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To address the limitations identified in studies on clustering models such as K-means, hierarchical
clustering, and two-step clustering, future research should consider several new approaches. Devel-
oping algorithms that incorporate adaptive clustering techniques can help models dynamically adjust
the number of clusters and initial centroids based on the data, improving accuracy and reducing
sensitivity to initialization parameters. Enhancing data quality through the use of sophisticated
preprocessing methods like noise filtering and missing data imputation can ensure more reliable
clustering results. Leveraging advanced ML techniques, such as ensemble learning, can help mitigate
the computational intensity required for large datasets, enabling more efhicient and scalable clustering
solutions. Implementing real-time clustering frameworks, perhaps through the use of streaming data
architectures, will allow for continuous updating and analysis, crucial for dynamic environmental
conditions. Additionally, integrating clustering models with spatial analysis tools can provide deeper
insights into geographical patterns and trends, making the outcomes more actionable. Developing
interactive visualization platforms that present clustering results in an intuitive manner can make
these models more accessible to non-experts, facilitating practical implementation. Incorporating
temporal data analysis within clustering models will help capture the dynamics of hydrological data
more effectively, providing a comprehensive understanding of temporal changes. Finally, including
socio-economic and climate change factors within clustering frameworks can lead to more sustainable
and holistic water management strategies. By focusing on these innovative strategies, future research
can significantly enhance the robustness, applicability, and practical utility of clustering models in
reservoir and dam management.

4.10 Regression

Regression techniques form a fundamental part of predictive modeling, focusing on estimating
the relationships among variables. These methods are extensively utilized in various scientific,
engineering, and economic fields to forecast future events based on historical data. The objective
of regression is to model the target variable as a function of one or more independent variables,
providing a quantitative assessment of the relationships among those variables. This modeling enables
decision-makers to understand how changes in predictor variables affect the outcome variable and to
make predictions or forecasts based on statistical analysis.

In Table 10, a diverse array of regression models used across different case studies is detailed. This
compilation includes both linear and nonlinear regression methods, highlighting their application in
predicting outcomes in natural resource management, hydrological forecasting, and environmental
science. The table serves as an extensive resource for understanding the versatility and effectiveness
of regression techniques in handling complex and multidimensional data.

The studies on regression models, including Multivariate Adaptive Regression Splines (MARS),
Multiple Linear Regression (MLR), and Support Vector Regression (SVR), exhibit several limitations.
One key limitation is the dependency on high-quality, comprehensive input data, which is essential
for accurate predictions but often challenging to obtain. These models can struggle with non-
linear relationships and complex interactions in the data, necessitating the integration of hybrid
approaches for improved performance. Additionally, the computational intensity required for training
and validating these models can be significant, limiting their scalability and real-time application.
Another limitation is the models’ sensitivity to input variability, which can lead to reduced accuracy
under varying environmental conditions. Furthermore, while regression models can provide robust
long-term forecasts, they may not capture short-term fluctuations effectively.



Table 10: Applications of Regression Techniques in Predictive Modeling.

Ref. | Case study Optimizer Type of data Main Conclusion Remarks
[172]| Goruh River | Multivariate Adap- | Streamflow values and | MARS was the most accurate model for predict- | The study demonstrates the effectiveness of
Basin, Turkey tive Regression | suspended sediment | ingSSL, achieving RMSE values between 35% and | heuristic and meta-heuristic models for SSL pre-
Splines (MARS), | load (SSL) data from two | 39% for test datasets, and even lower errors (7% | diction, with MARS showing superior performance.
TLBO, ABC, Clas- | gauging stations to 15%) for another dataset. TLBO and ABC also | The approach requires comprehensive data for
sical  Regression performed well but were outperformed by MARS. | training and validation to ensure accuracy.
Analysis (CRA)
[173]| Detention Multivariate Adap- | Hydraulic parameters, sed- | MARS model showed superior accuracy in predict- | The MARS model effectively maps complex rela-
Damsin Iran tive Regression | iment characteristics, sedi- | ingtrap efficiency (TE) of detention dams with an | tionships between hydraulic parameters and TE,
Splines (MARS), | ment trap efficiency data R? value of 0.95 and RMSE of 5.79, outperforming | providing a robust tool for dam performance anal-
Gene  Expression other models like GEP and GMDH. The most effec- | ysis. However, the accuracy of the model depends
Programming (GEP), tive parameters identified were the ratio of flood | on the quality of input data and comprehensive
Group Method volume to sediment volume (VF/VS), mean diam- | parameter tuning.
of Data Handling eter of sediment size (D50), and specific gravity
(GMDH) (Gs).
[174]| Pailugou Multivariate Adap- | River flow data, precipita- | The MARS model provided accurate river flow fore- | The study shows the effectiveness of MARS in han-
catchment, tive Regression | tiondata, temperaturedata | casts with R values above 0.90 and NS values | dling complex nonlinear relationships in hydro-
China Splines (MARS), above 0.80 for 1-, 2-, and 3-day lead times. The | logical data. However, the M5Tree model demon-
Support Vector M5Tree model outperformed both MARS and SVR, | strated superior overall performance, indicating
Regression  (SVR), achieving the highest NS value of 0.917 for 1-day | the potential for hybrid modeling approaches.
M5 Model Tree ahead forecasts.
(M5Tree)
[175]| Lower  Mur- | Generalized Ad- | River discharge data, rain- | Riverregulation and water diversion significantly | The study highlights the need for balanced water
rumbidgee ditive Models | fall data, SPI, SFlindices impact hydrological drought characteristics. The | management to address the conflicting needs of
River, Aus- | (GAM), Locally Esti- GAM with LOESS terms revealed that upstream | upstream and downstream users. The integration
tralia mated Scatterplot regulation reduced drought severity at Wagga | of SPI and SFI indices provided a robust frame-

Smoothing (LOESS)

Wagga but increased it downstream at Balranald.
The SFI model showed that regulation mitigated
droughts in the upstream region while exacerbat-
ing them downstream due to increased water di-
version.

work for analyzing the impacts of regulation on
drought characteristics. The complexity of the
models requires high-quality input data and com-
putational resources.
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[176]

Besiri, Mal-
abadi (Turkey),
Hit, Baghdad
(Iraq)

Multivariate Adap-

tive Regression
Splines (MARS),
Multiple Linear
Regression  (MLR),
Least Square
Support Vector
Regression (LSSVR),
M5 Model Tree
(M5Tree)

Monthly streamflow data,
periodicity component

The LSSVR model outperformed MARS, M5Tree,
and MLR in long-term streamflow forecasting,
achieving the highest accuracy with RMSE reduc-
tion of 8.95-4.19% for Besiri, 12.8-8.08% for Mal-
abadi, -0.12-4.03% for Hit, and 13.56-10.03% for
Baghdad. Including periodicity as an input sig-
nificantly improved model performance, with R
values for LSSVR reaching 0.905 for Besiri, 0.894
for Malabadi, 0.810 for Hit, and 0.879 for Baghdad.

The periodicity component significantly enhances
the forecasting accuracy of the models. While
MARS and MLR showed good performance, LSSVR
consistently provided the best results, demon-
strating its robustness in handling complex, non-
linear relationships in hydrological data. The
study highlights the importance of incorporating
periodic data for improved prediction accuracy.

[177]

480 Catch-
ments in
Germany and
Austria

Multiple Linear Re-
gression (MLR), Ran-
dom Forest (RF)

Streamflow data, precipita-
tion data, catchment char-
acteristics

Catchment response variables are the most signif-
icant controls of heavy tail behavior in flood dis-
tributions. Specifically, a high runoff coefficient
and short event time scales are associated with
heavier tails. MLR models achieved R? values up
to 0.607, and RF models provided additional in-
sights into nonlinear relationships.

Understanding catchment-specific responses is
crucial for improving flood risk management. The
models require comprehensive datasets and high
computational resources, highlighting the need
for targeted flood mitigation strategies in different
catchment areas.

[171]

Tigris  River
Stream-flow
Forecasting

Support Vector
Regression  (SVR),
Generalized Re-
gression Neural
Network  (GRNN),
Extreme Learning
Machine (ELM)

Stream-flow data from
June 1991 to December
2010

ELM showed a significant improvement over SVR
and GRNN in forecasting stream-flow. The RMSE
and MAE were reduced by about 17.44-29.78%
and 21.3-30.92% respectively when using ELM
compared to SVR and GRNN.

The RMSE reduction by ELM indicates a better fit
for the observed data, enhancing the prediction
accuracy for water resources management deci-
sions.

[178]

Monthly
Streamflow
Forecasting,
Karkheh Dam,
Iran

Least-Square

Support Vector
Regression (LS-
SVR), Artificial
Neural Network

(ANN), Generalized
Regression Neural
Network  (GRNN),
K-Nearest Neighbor
Regression (KNN)

Monthly inflow, rainfall,

snow area extent

LS-SVR performed best in nonlinear conditions,
while ANN performed best in linear conditions.
The comparative assessment showed that LS-SVR
is superior in capturing the nonlinear relation-
ships between predictors and predicted variables.

LS-SVR showed the lowest RMSE values in nonlin-
ear conditions, indicating higher prediction accu-
racy. ANN performed well in linear conditions but
was outperformed by LS-SVR and KNN in nonlin-
ear conditions. The study highlights the impor-
tance of selecting appropriate models based on
the nature of the data.
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Several research gaps are identified in the studies focused on regression models. There is a need
for enhanced methods to handle data sparsity and variability, ensuring the robustness of predictions
across diverse hydrological scenarios. Exploring the integration of real-time data streams and adaptive
learning mechanisms could improve model responsiveness to dynamic changes. Developing more
sophisticated hybrid models that combine regression techniques with other ML methods could
enhance predictive accuracy and robustness. Comprehensive validation across different geographical
locations and climatic conditions is necessary to ensure generalizability. Additionally, incorporating
socio-economic factors and climate change impacts into these models could provide more holistic and
sustainable water management solutions. Improving the interpretability and usability of regression
models for practical application in decision-making is also crucial, as is the need for more efficient
computational techniques to facilitate real-time applications. Finally, focusing on capturing both
long-term trends and short-term fluctuations in water resource data will be critical for advancing
the effectiveness of these models in various water management contexts.

For regression models such as Multivariate Adaptive Regression Splines (MARS), Multiple Linear
Regression (MLR), and Support Vector Regression (SVR), future research should explore several
new strategies. Implementing transfer learning techniques can help models leverage pre-trained
knowledge from related domains, improving performance even with limited high-quality data.
Developing models that incorporate multi-fidelity simulations can enhance accuracy by combin-
ing high-precision data with lower-quality datasets. Utilizing advanced optimization algorithms,
such as genetic algorithms or particle swarm optimization, can improve the efficiency of training
processes, making real-time applications more feasible. Additionally, integrating spatial-temporal
analysis methods can help models capture both spatial variability and temporal dynamics in water
resource data, providing more comprehensive insights. Employing robust statistical techniques to
adjust for input variability can enhance model stability and accuracy under diverse environmental
conditions. Creating modular frameworks that allow for easy integration of socio-economic and
climate change factors can lead to more sustainable water management solutions. Enhancing model
transparency through explainable AI techniques will make regression models more interpretable for
practitioners, aiding in practical decision-making. Finally, establishing standardized benchmarks
and validation protocols across different geographical locations and climatic conditions will ensure
the generalizability and reliability of these models. By focusing on these innovative approaches,
future research can significantly improve the robustness, scalability, and practical utility of regression
models in reservoir and dam management.

4.11 Instance Based Learning

Instance-based learning is a category of learning algorithms that base their prediction on instances
or examples from the training dataset rather than attempting to construct a general internal model.
These algorithms, such as k-Nearest Neighbors (k-NN), rely on the similarity between new problem
instances and instances seen during training, using these similarities to predict the output. This
approach is particularly effective for tasks where the decision boundary is irregular and can adapt
quickly to changes in input data without the need for retraining.

In Table 11, the use of instance-based learning methods in reservoir management is explored.
The table showcases several case studies that demonstrate how these algorithms are applied to predict
hydrological outcomes (Out flow and Reservoir’s storage levels) based on historical data (currently
and previously recorded in-flow data, including rainfall intensities). Each case study details the
optimizer used, the type of data analyzed, and the results achieved, emphasizing the practicality and
direct applicability of instance-based learning in managing water resources.



Table 11: Applications of Instance-Based Learning in Reservoir Management.

Ref. | Case study Optimizer Type of data Main Conclusion Remarks

[179]| Zayandeh-rud | K-Nearest Neigh- | Hydrological data,accumu- | The optimized K-NN method, enhanced with vari- | The use of K-NN combined with HBMO and other
Dam, Iran bour (K-NN), | lated inflow data from 1971 | ous techniques including HBMO, showed signifi- | optimization techniques effectively improved pre-

Honey-Bee Mat- | to2001 cant improvement in long-lead hydrological fore- | diction accuracy. The study highlighted the impor-

ing  Optimization casting. The accuracy increased with a correlation | tance of data preprocessing, optimal selection of

(HBMO) coefficient of 96%, a reduction in volume errorto | neighbors, and distance functions for enhancing
8%, and a decrease in RMSE to 25%. K-NN performance.

[180]| Karun-1 Dam, | Fuzzy  K-Nearest | Cavitation damage data, | The Fuzzy KNN model effectively predicted the lo- | The Fuzzy KNN approach improved prediction ac-

Iran Neighbor  (Fuzzy | flow characteristics (pres- | cation and intensity of cavitation damage on the | curacy for cavitation damage, providing reliable

KNN) sure, velocity) Karun-1 Dam spillway. The model showed high | insights for spillway design and maintenance. The
predictive accuracy with Pearson’s correlation co- | modelrequires high-quality input data and proper
efficient of 0.873, MAE of 0.167, NRMSE of 0.110, | normalization to avoid bias.
and CRM of 0.007.

[181]| Guadalmellato | Self-Organizing Map | Rainfall, streamflow, reser- | The SOM-based decision support system effec- | The SOM approach allows for an intuitive and help-
River Reser- | (SOM) voir level, water releases tively models and visualizes the complex relation- | fulinterpretation of data, makingit a valuable tool
voir, Spain ships between key variables involved in reservoir | for reservoir managers. The method relies on his-

operation. It provides operation profiles that help | torical data, making it crucialto have accurate and
in identifying and characterizing different condi- | comprehensive records for effective training and
tions and policies, improving decision-making for | analysis.

reservoir management.

[98] | 10-reservoir Karhunen-Loeve Reservoir inflows, outflows, | The spectral optimization model (SOM) signifi- | The SOM effectively transforms decision variables
system, (KL) Expansion,Non- | storage levels, power gen- | cantly reduced the dimensionality of decisionvari- | from the time domain to the frequency domain,
Columbia dominated Sorting | eration, fish flow require- | ables, achieving better optimization performance | reducing the search space and improving com-
River, USA Genetic Algorithm Il | ments with fewer decision variables. For 140 decision | putational efficiency. This approach avoids local

(NSGA-II) variables, optimal performance was obtained with | optima and ensures better convergence and diver-
6 KL terms, and for 3360 decision variables, with | sity in optimization results. However, it requires
11 KL terms. prior computation to construct the KL expansion

and high-quality input data.

[182]| Bukan Reser- | K-Nearest Neighbor | Inflow data, reservoir stor- | ANFIS outperforms KNN with a 25% reductionin | The study demonstrates the superiority of ANFIS

voir, Lake
Urmia Basin,
Iran

(KNN), ANFIS

age levels, water releases

RMSE, 23% reduction in PWRMSE, 27% improve-
ment in NSCE, and 10% higher correlation coeffi-
cient. The ANFIS-based adaptive reservoir opera-
tion model achieved an objective function value
only 5% better than the KNN-based model, high-
lighting the efficiency of the adaptation and up-
dating procedure in reducing forecast errors.

over KNN for streamflow forecasting in terms of
prediction accuracy. However, the marginal im-
provement in the reservoir operation model’s per-
formance suggests that the adaptive updating
mechanism effectively mitigates forecast errors,
making both methods viable for operational use.
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[183]

Monthly
Streamflow
Forecast-

ing, Three
Gorges Region,
Yangtze River

SVM with Adaptive
Insensitive Factor,
Wavelet Denoising,
PSO

Monthly streamflow data,
rainfall, temperature

The improved SVM model with adaptive insensi-
tive factor and wavelet denoising significantly im-
proves forecasting accuracy. The SVM with PSO
optimization demonstrates better generalization
ability and higher prediction accuracy compared
to conventional SYM and ANN models.

The use of adaptive insensitive factors and PSO
in SVM reduces the RMSE by 17.44-29.78%, indi-
cating a substantial improvement in prediction
performance. This model is suitable for complex
hydrological data series.

[184]

Clair  Engle
Lake and
Bhadra Reser-
voir

K-Nearest
bors (KNN)

Neigh-

Hydrological and climate
phenomenon data

KNN showed the least desirable performance for
both Clair Engle Lake and Bhadra reservoirs. De-
spite various parameter settings, KNN was less
effective in predicting daily inflows compared to
other models such as LSTM and Gradient Boosting
Regressor. The model struggled with capturing
the complex, non-linear relationships present in
the hydrological and climate data.

RMSE values varied significantly, with Clair En-
gle Lake showing RMSE: 43.56 - 66.27 m>/s, and
Bhadra Reservoir RMSE: 65.18 - 66.27 m?/s, indi-
cating a higher error margin. KNN’s performance
was consistent in being the least effective across
different seasons and parameter settings, suggest-
ing its limitations in handling the intricacies of
reservoir inflow forecasting.

[185]

Shihmen
Reservoir,
Northern
Taiwan

Self-Organizing Map
(SOM), Support Vec-
tor Machine (SVM),
Autoregressive
Method (AR)

Outflow sediment concen-
tration, rainfall, inflow and
outflow data

The combination of SOM, SVM, and AR (SOSVMAR)
significantly improves the accuracy of outflow
sediment concentration forecasts. The SOM al-
gorithm effectively clusters the data to identify
patterns and salient features, leading to improved
forecasting performance by SVM. AR further cor-
rects the forecasted data in real-time.

The SOM algorithm helps in reducing the model’s
error by 40% at the power plant intake and 35%
at the bottom outlet for long lead time forecast-
ing (3 hours). The integration of these algorithms
provides robust and reliable forecasts, crucial for
reservoir sediment management during desilting
operations. RMSE values indicate significant im-
provements in prediction accuracy.
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The analysis of instance-based models reveals several significant limitations. Firstly, the per-
formance of models like K-Nearest Neighbor (KNN) and Self-Organizing Maps (SOM) is highly
dependent on the quality and pre-processing of input data, which can vary and influence outcomes.
For example, in the Zayandeh-rud Dam study, the K-NN model’s accuracy improved significantly
with techniques like HBMO and proper data normalization. However, the computational demands,
particularly when combined with optimization techniques, can be substantial, posing challenges for
real-time application, as seen in the 10-reservoir system study where the KL Expansion required
considerable computational effort. Additionally, these models often rely on historical data, which
may not always capture sudden or extreme environmental changes. This reliance is evident in studies
like the Karun-1 Dam and Shihmen Reservoir, where historical data played a crucial role in model ac-
curacy. The complexity of instance-based models can also present interpretation challenges, making
them less accessible to users without specialized knowledge. For instance, the spectral optimization
model in the Columbia River study required expertise to interpret the dimensionality reduction
results. Furthermore, the need for proper normalization to avoid bias and ensure accurate predictions
is critical, as highlighted in multiple studies.

To address these limitations, future research should focus on developing more efficient data
pre-processing and normalization techniques that can automatically adjust to varying data quality
and types, ensuring robust model performance. Implementing real-time data integration systems,
combined with adaptive learning algorithms, will enhance the models’ responsiveness to sudden
environmental changes and improve their overall accuracy. For example, incorporating IoT sensors
for continuous data collection can provide up-to-date information for models like KNN and ANFIS,
as demonstrated in the Bukan Reservoir study. Exploring hybrid models that integrate instance-based
approaches with advanced ML techniques, such as deep learning or ensemble methods, can yield better
predictive performance and robustness, as shown in the studies involving SVR and PSO. Additionally,
utilizing cloud-based platforms and parallel processing can alleviate computational demands, making
real-time applications more feasible by distributing the computational load. Comprehensive validation
across different geographical regions and climatic conditions, such as the diverse datasets used in the
Clair Engle Lake and Bhadra Reservoir studies, will ensure these models are robust and generalizable.
Incorporating socio-economic factors and climate change projections into instance-based models
will result in more holistic and sustainable management solutions. Enhancing the interpretability
of these models through intuitive visualization tools and user-friendly interfaces will make them
more accessible to non-experts, facilitating broader adoption in practical decision-making scenarios.
By addressing these areas, future research can significantly improve the robustness, scalability, and
applicability of instance-based models in various environmental contexts, leading to more effective
and informed decision-making in reservoir and dam management.

4.12 Hybrid Machine Learning

Hybrid ML techniques represent a significant advancement in the field of reservoir management and
optimization. These methods combine the strengths of multiple ML algorithms to improve predictive
accuracy, operational efficiency, and robustness in handling complex systems. By leveraging the
unique capabilities of different models, hybrid approaches address various challenges such as non-
linearity, high dimensionality, and the need for both global and local optimization.

In Table 12, the role of hybrid ML techniques in optimizing reservoir operations is detailed.
The table presents multiple case studies where hybrid models have been successfully applied to
enhance the management and prediction of reservoir systems. Each entry illustrates the specific
hybrid techniques used, the types of data involved, and the main conclusions drawn from these
studies. Furthermore, the table describes how hybridization improved the models’ performance by
combining different optimization strategies, addressing data integration challenges, and providing
more reliable predictions under various scenarios



Table 12: Impact onybrid Machine Learning Techniqucs on Reservoir Management Models.

Ref. | Case study Optimizer Type of data Main Conclusion Remarks

[186]| Mangla Water- | Extreme Learning | Monthly precipitation and | The hybrid ELM-PSOGWO model provided the | Thehybridization combined PSO and GWO to form
shed, Pakistan | Machine (ELM), | runoff data most accurate monthly runoff predictions, reduc- | PSOGWO, enhancing exploration and exploita-

Particle Swarm ing RMSE by 38.2% compared to standalone ELM, | tion abilities. PSO provided local search strength,

Optimization (PSO), and significantly outperforming other hybrid mod- | while GWO contributed global search capabilities,

Grey Wolf Opti- els (ELM-PSO, ELM-GWO, and ELM-PSOGSA). The | overcomingindividual weaknesses. PSOGWO out-

mization (GWO), ELM-PSOGWO achieved the lowest RMSE (55.14 | performed PSOGSA and standalone models, prov-

PSOGWO, PSOGSA m?/s) and the highest NSE (0.919) in the test | ing effective in optimizing ELM parameters for
phase. more accurate predictions.

[187]| Kenyir Dam, | Bayesian Linear | Daily water level, rainfall, | BLR outperformed other models with R?> of | Hybridization involved using Bayesian Inference
Terengganu, Regression  (BLR), | hourly sent-out data 0.998952 for SC1 and BDTR with R? of 0.99992 for | combined with linear regression to handle insuf-
Malaysia Boosted Decision SC2. BLR and BDTR provided highly accurate wa- | ficient and incorrectly distributed data. The com-

Tree  Regression ter level forecasts. bination of BDTR with hyperparameter tuning im-
(BDTR),  Decision proved prediction accuracy, addressing the lim-
Forest Regression itations of traditional models. For SC2, adding
(DFR), Neural Net- sent-out data further refined predictions.

work  Regression

(NNR)

[188]| Klang Gate | Sim-Heuristic, Har- | Precipitation, Temperature, | The sim-heuristic approach effectively optimized | The hybridization involved using a combination of
Dam ris Hawks Optimiza- | Solar Radiation, Evapora- | the reservoir operations under various climate

tion

tion, Inflow

scenarios (RCP 2.6, RCP 4.5, RCP 8.5). Scenario 3
showed the greatest reliability in satisfying exact
demand with 93.54%, as well as the least short-
age index and length of water deficit under RCP
4.5. The study demonstrated that using an ensem-
ble of GCMs provided more reliable results in hy-
drology management compared to a single GCM,
emphasizing the importance of considering multi-
ple climate models for accurate forecasting and
planning.

Artificial Neural Networks (ANN) and Support Vec-
tor Regression (SVR) for downscaling climate data.
The ANN and SVR models were used to predict
precipitation and temperature variables, achiev-
ing high correlation values, with the SVR (Poly
Kernel function) showing superior performance.
This was followed by the application of the Harris
Hawks Optimization (HHO) algorithm to optimize
the reservoir operations. The HHO algorithm uti-
lized various strategies to mimic the predatory
behavior of Harris hawks, including soft and hard
siege tactics, to find the optimal solution for mini-
mizing water deficit while adhering to storage and
release constraints.
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[189]

Feitsui Reser-
voir

Artificial Neural Net-
work (ANN) and Ge-
netic Algorithm (GA)

Nutrient loads, precipita-
tion, outflow, water quality
data

The combined ANN and GA approach effectively
managed water quality in Feitsui Reservoir. The
ANN model simulated nutrient load behavior and
forecasted total phosphorus (TP) concentration
with high accuracy. GA optimized nutrient load
control, achieving up to a 60% reduction in TP con-
centration. The ANN model showed better perfor-
mance than traditional TP models, capturing sea-
sonal variations effectively. The study concluded
that a 10-80% reduction in watershed nutrient
loads could maintain the reservoir at oligotrophic
or mesotrophic levels.

Hybridization involved integrating ANN and GA for
reservoir water quality management. ANN mod-
eled nutrient loads and predicted TP concentra-
tions, leveraging data from watershed loads, pre-
cipitation, and outflow. The model was trained
with a 6-year dataset (1992-1997) and validated
with data from 1998-2000, achieving good corre-
lation with observed values. GA was used as a
search strategy to optimize nutrient load reduc-
tion rates from the watershed, minimizing the ob-
jective function. The hybrid approach allowed the
simulation of different scenarios, showing that
control schemes could significantly improve wa-
ter quality.

[190]

Hydropower
Multi-
Reservoir
Systems, Iran

Influential Flower
Pollination Al-
gorithm (IFPA),

Adaptive Guided Dif-
ferential Evolution
(AGDE), Composite
Differential Evolu-
tion (CODE), HSLSO,
ITLBO, jDE, SATLBO,
MS-DEPSO

Water inflow, Reservoir stor-
age, Hydropower genera-
tion, System efficiency

The IFPA outperformed other optimization meth-
ods in terms of convergence speed and precision
in achieving the global solution for multi-reservoir
systems. It showed significant improvements
in total power production with reduced power
deficits. For instance, the IFPA achieved an opti-
mal objective function value of 308.83 for the four-
reservoir system, and 1196.92 for the ten-reservoir
system, surpassing other advanced methods. Er-
ror analysis indicated that IFPA had much lower
errors compared to others, ensuring powerful per-
formance in terms of accuracy and stability.

The hybridization involved the integration of the
Flower Pollination Algorithm with enhancements
to improve both global and local search mecha-
nisms. These included a rank-based mechanism
for better transition between global and local
searches, and adaptive coefficients to fine-tune
the search process. Additionally, hybridization
with DE, PSO, and other algorithms allowed lever-
aging strengths of various methods, ensuring ro-
bust optimization for hydropower reservoir oper-
ations.

[191]

NA

Hybrid Evolutionary
Algorithms

Water inflow, Reservoir stor-
age, Hydropower genera-
tion, System efficiency

The review highlights the effectiveness of hybrid
evolutionary algorithms in optimizing reservoir
operations. It concludes that these algorithms
provide better solutions than single algorithms,
particularly in handling multi-objective and multi-
reservoir systems. The algorithms can solve com-
plex and multidimensional problems with fast
convergence rates and improved accuracy.

Hybrid algorithms combine the strengths of dif-
ferent evolutionary algorithms to improve perfor-
mance. Examples include combining Genetic Al-
gorithms (GA) with Particle Swarm Optimization
(PSO) or Differential Evolution (DE) to leverage
the advantages of each. These hybrids enhance
both global and local search capabilities, leading
to more robust and reliable solutions for reservoir
optimization.
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[192]

Roadford Wa-
ter Supply Sys-
tem

Genetic Algorithm
- Linear Program-
ming (GA-LP)

Historical inflow records of
a multi-reservoir system

The GA-LP hybrid approach was effective in opti-
mizing the operation of the Roadford Water Sup-
ply System. It provided comparable results to
the RELAX algorithm, ensuring non-zero final stor-
ages in the larger reservoirs. The method demon-
strated potential for generating operating policies
in the form of hedging rules without a priori impo-
sition of their form.

The GA-LP hybrid method identifies cost reduc-
tion factors (CRFs) via Genetic Algorithms and op-
erational variables via Linear Programming. CRFs
are introduced to discourage reservoir depletion
in the initial stages of the planning period. The
weights for CRFs are determined through a two-
step optimization process using GA, which are
then used in LP to update operational decisions
based on new inflow forecasts, enhancing compu-
tational efficiency.

[193]

Monthly Op-
timization
Scheduling of
a Hydropower
Reservoir

Chaos Genetic Algo-
rithm (CGA)

Historical monthly inflows
of the reservoir over 38
years

CGA integrates GA’s global search with COA’s lo-
cal search to overcome premature convergence
and slow optimization in traditional GAs. It pro-
duced higher average annual energy, lower total
spill, and faster execution time compared to Dy-
namic Programming and standard GA, proving its
efficiency and accuracy in optimizing hydropower
reservoir operations.

CGA hybridizes GA with COA, starting with chaos
optimization to ensure a diverse and high-quality
initial population. Itemploys an annealing chaotic
mutation to avoid local optima and maintain di-
versity. This integration balances exploration and
exploitation, enhancing global optimization and
proving effective for complex reservoir systems
like the Chaishitan hydropower reservoir.

[194]

Nagarjunasagar
Multi-Purpose
Reservoir,

India

Genetic Algorithm -
Nonlinear Program-
ming (GA-NLP) Hy-
brid Approach

Historical inflow records
and crop water require-
ments

The GA-NLP hybrid model effectively optimized
the reservoir operation for irrigation and hy-
dropower production. It provided superior bene-
fits compared to standard operating policies, es-
pecially in drought conditions. The hybrid model
improved reliability, maximizing net benefits from
crops and hydropower generation.

The GA-NLP hybrid approach uses GA to perform a
global search for initial solutions, which are then
refined using NLP for faster convergence to the
global optimum. This integration leverages GA’s
global exploration capabilities and NLP’s local re-
finement efficiency, ensuring optimal water allo-
cation and reservoir management.
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The PSOGWO approach, despite enhancing exploitation capabilities, might face limitations in
global search strength, affecting the optimization of complex reservoir systems. Similarly, while
Bayesian Linear Regression and Boosted Decision Tree Regression improved predictions in the
Kenyir Dam study, the integration of hybrid models still encounters challenges with hyperparameter
tuning and handling different data types for more accurate predictions. The hybrid sim-heuristic
and Harris Hawks Optimization approaches for Klang Gate Dam showed promising results but may
struggle with the reliability of hydrology management compared to single Global Climate Models
(GCMEs), impacting accurate forecasting and planning for various climate scenarios.

In the Feitsui Reservoir study, although ANN and GA hybrid models managed nutrient load
control effectively, they faced challenges in simulating nutrient load behavior with high accuracy,
especially in capturing seasonal variations. The IFPA approach for Hydropower Multi-Reservoir
Systems in Iran, despite outperforming other methods, might have limitations in terms of the
convergence speed and precision required for optimizing complex multi-reservoir systems, and
challenges in integrating multiple local search methods effectively. Lastly, while the general review
on hybrid evolutionary algorithms noted their potential in optimizing reservoir operations, they
still struggle with handling multi-objective and multi-reservoir systems efficiently, with trade-offs
between convergence rates and accuracy needing further exploration.

There is a need for improved integration and validation of hybrid models for diverse data types
and varying temporal and spatial scales in reservoir operations. Current studies show potential
in individual optimization techniques, but there is a gap in robustly combining global and local
search methods for more precise and stable results. Additionally, there is a limited understanding of
how hybrid models can be generalized across different climatic and geographical conditions, which
impacts the reliability of predictions and operational strategies.

Moreover, there is a necessity to explore more effective hyperparameter tuning methods and
address data integration challenges to enhance the predictive capabilities of hybrid models. The
existing literature reveals a gap in comprehensive frameworks that efficiently handle multi-objective
and multi-reservoir systems. Future research needs to address these gaps to ensure sustainable and
efficient water resource management through advanced and validated hybrid optimization models.

Future research should focus on developing more sophisticated hybrid models that can seamlessly
integrate various optimization techniques, addressing both global and local search capabilities. Em-
phasis should be placed on enhancing hyperparameter tuning methods and validating these models
across diverse climatic and geographical conditions to ensure robustness and accuracy. Further-
more, exploring the use of advanced ML methods for real-time data assimilation and prediction can
provide more reliable solutions for reservoir operation optimization. Collaborative efforts between
hydrologists and data scientists could lead to the development of comprehensive frameworks that
handle multi-objective and multi-reservoir systems efficiently, ensuring sustainable and efficient
water resource management.

5. Literature Assessment and Evaluation

In studies where ML algorithms are evaluated and compared, different error criterions are adopted,
that includes Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Squared Error
(MSE), Coefficient of Determination (R?), and Mean Absolute Percentage Error (MAPE). Among
these, RMSE is often the most preferred error criterion in many ML studies due to its sensitivity to
larger errors and its ability to provide a clear measure of the accuracy of predictions [195].
Evaluating and comparing the performance of ML algorithms is crucial in ensuring their reliability
and accuracy. Different error metrics, such as Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), Mean Squared Error (MSE), Coefficient of Determination (R?), and Mean Absolute
Percentage Error (MAPE), provide valuable insights into how well a model performs. Among these,
RMSE is often considered the most preferred error criterion in many ML studies due to its distinctive
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characteristics [196], [197].

Mean Absolute Error (MAE) calculates the average magnitude of errors in a set of predictions,
treating all errors equally regardless of their direction. This metric is straightforward and easy to
understand, making it a popular initial choice for evaluating models. However, MAE does not give
extra weight to larger errors, which can be a limitation when significant deviations are particularly
problematic [198], [199].

Root Mean Squared Error (RMSE) stands out due to its sensitivity to larger errors. RMSE is
calculated by taking the square root of the average squared differences between predicted and observed
values. This squaring process penalizes larger errors more heavily, making RMSE particularly useful
in applications where large prediction errors are more consequential. For instance, in fields like
environmental modeling and energy consumption forecasting, larger errors can have significant
implications, thus making RMSE a preferred metric [196], [198].

Mean Squared Error (MSE), which is the square of RMSE, is another commonly used metric that
emphasizes larger errors. MSE’s primary advantage is its ease of use in mathematical formulations,
but its interpretation is less intuitive because of the squaring effect, which can make RMSE more
favorable for reporting results. The penalty for larger errors in both RMSE and MSE can highlight
models that may appear adequate under less sensitive metrics but fail to perform well in real-world
applications where accuracy is critical [196], [200].

Coefficient of Determination (R?) measures the proportion of variance in the dependent variable
that is predictable from the independent variables. It is widely used in regression analysis to evaluate
the goodness of fit. However, R? alone can be misleading, especially in non-linear models or when
comparing models with different numbers of predictors. It does not provide a direct measure of
prediction error, thus necessitating the use of additional metrics like RMSE for a comprehensive
evaluation [201], [202].

Mean Absolute Percentage Error (MAPE) expresses prediction accuracy as a percentage, which
can be advantageous for interpretability in business and economic applications. However, MAPE
can be problematic when dealing with data that include zero values or very small values, as it can
lead to infinite or undefined values [203], [204].

The preference for RMSE in ML literature is well-justified. RMSE provides a clear measure
of prediction accuracy by heavily penalizing larger errors, which is essential in many real-world
applications. In environmental modeling, for instance, accurate predictions of phenomena like air
quality and water levels are crucial, and RMSE’s sensitivity to larger errors ensures that models
providing the most accurate predictions are identified [205]-[207]. This sensitivity helps in refining
models that might otherwise be deemed adequate under less sensitive metrics such as MAE or MAPE.
In energy consumption forecasting, RMSE is favored because it accurately captures the importance
of peak demand predictions. Accurate peak demand predictions are necessary to prevent outages and
optimize resource allocation. The penalty on larger errors inherent in RMSE helps highlight models
that perform better in predicting these critical values [208].

The theoretical justification for using RMSE lies in its mathematical properties. Derived from the
Euclidean distance, RMSE is a natural measure of average error magnitude. Its sensitivity to larger
errors aligns well with the goals of many predictive modeling applications, where avoiding significant
deviations from actual values is paramount. Additionally, RMSE is dimensionally consistent with the
data being measured, which aids in maintaining interpretability and comparability across different
studies and datasets [196], [198].

Overall, RMSE’s ability to penalize larger errors more heavily than MAE and its natural alignment
with the Euclidean distance make it a preferred choice in many ML studies. Its usage across various
fields underscores its versatility and importance in ensuring accurate and reliable model performance
evaluation. As ML continues to advance, RMSE remains a cornerstone metric for assessing the
quality of predictive models, providing a robust measure of accuracy that is essential for effective
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decision-making in numerous applications.

In the realm of dam operations, several advanced computational models have demonstrated
exemplary accuracy and reliability, crucial for effective water management and operational planning.
Among these, the Multivariate Adaptive Regression Splines (MARS) stands out for its versatility in
hydrological modeling, achieving remarkable Nash-Sutcliffe efficiency scores as high as 0.917 for
1-day forecasts, thereby proving its efficacy in adapting to complex, non-linear relationships in river
flow and precipitation data [174]. Similarly, Support Vector Regression (SVR), enhanced with M5
Model Trees (M5Tree), has showcased robust performance, particularly noted for its precision in
streamflow predictions, which are essential for reservoir operation and strategic water release decisions
[174], [176]. Further, the Stacking Ensemble Mechanism (SEM) integrates multiple predictive models,
including Bi-LSTM, CNN, and RF, achieving KGE values of 0.94 during training and 0.89 during
testing, thus underscoring its high predictive accuracy and effectiveness in daily reservoir inflow
predictions [133]. Lastly, the Fuzzy Inference System (ANFIS) outperforms traditional models like
KNN with a 25% reduction in RMSE, offering refined forecasting capabilities that enhance the
adaptability and precision in managing reservoir inflow and water storage levels [179], [182]. These
models collectively enhance the decision-making process in dam operations, ensuring not only the
optimal utilization of water resources but also the safety and sustainability of reservoir systems [98],
[103], [133], [174], [17¢6], [181].

The optimization models reviewed in this article were versatile. Some of them were repeated in
many different sections and at different uses. It might be a little difficult to recognize which model is
meant to be bolded and studied. Due so, a pie chart representing the demonstration of models of
interest per section is plotted. The percentage of the used ML models indicates the significance of
this review in covering different aspects of the literature and which model currently the authors are
interested in. The Pie-charts are shown in Figure 4.

The suite of models employed in dam operations, as evidenced by recent studies, demonstrates
a diverse range of capabilities that cater to the multifaceted challenges of hydrological forecasting
and water resource management [1], [99], [116], [124]. The Multivariate Adaptive Regression
Splines (MARS) is particularly commendable for its adaptability to nonlinear data, making it ideal for
complex hydrological contexts where precision is paramount. On the other hand, Support Vector
Regression (SVR) supplemented with M5Tree techniques brings a mathematical rigor to handling
voluminous data, ensuring that models do not just fit but also generalize well beyond the training
datasets. This is crucial in scenarios where long-term forecasting impacts operational decisions [174],
[176].

However, the Fuzzy Inference System (ANFIS) stands out for its ability to handle uncertainty
and imprecision—common features in environmental data—thereby providing outputs that are
not only precise but also practical for real-world applications. Each of these models has its merits
and potential drawbacks; the choice of model often depends on the specific requirements of the
study, data availability, and the desired precision in outcomes. For instance, while MARS and SVR
are superb for their predictive accuracy, RF and SEM offer resilience against data overfitting, and
ANFIS offers unmatched handling of fuzzy data, making them indispensable tools in the arsenal of
hydrological modeling and dam operation management [116], [182].

In the intricate domain of dam operations, a few computational models have repeatedly proven
their worth by surfacing prominently in multiple research studies, highlighting their widespread
applicability and trusted performance. The Genetic Algorithm (GA) emerges as a particularly versatile
tool, appearing in 20 distinct studies, where it adeptly handles the optimization of complex, nonlinear
problems prevalent in water resource management [106], [107], [109]-[112]. Similarly, the Bayesian
Networks (BNs), noted in 8, is lauded for its ability to capture and model the intricate relationships
within voluminous hydrological datasets. Dynamic Programming also features in 5 studies, prized
for its methodical precision in formulating and executing optimal water release strategies under
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Mathmatical Programming Evolutionary Algorithms

@OP ENLP OLP BMILP EGA BDE OCGA

Neural Networks Bayesian Learning

@ISTM @IDCNN DANN @ANFIS ESFNN @FNN @ Naive Bayes Classifier @BNN @ Bayesian Stochastic Model @DBN S BNs

Ensemble Algorithms Decision-Tree Algorithms
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Regularization Dimensionality Reduction
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Clustering Regression
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Instance-Based Learning Hybrid Machine Learning
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Figure 4: Optimization models’ demonstration percentages according to the reviewed results.
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varied operational scenarios [99]-[101]. These models, by virtue of their repeated application and
noted success in addressing diverse challenges, underscore their fundamental role in advancing the
efficiency and reliability of dam operations across the globe.

The frequently used optimization techniques and/or ML algorithms as per this review are shown
in Figure 5. The number of articles shows how many times these optimizers were used as standalone
and/or hybridized techniques. Fuzzy enhanced algorithms are the algorithms that used fuzzy logic
to enhance their accuracy whether the learning style was neural network, Regularization or Instance
Based learning. Same applies to GA that includes Real-Coded GA or Binary-Coded GA while
Boost Algorithms include XGBoost, CatBoost and LGBM. The same applies to Bayesian enhanced
algorithms which include DBN, BN, BNN and others.

Reviewed Optimizers
25

20
15

10

number of articles

Mathmatical GA MARS BOOST ANN Fuzzy Bayesian
Programming Algorithms enhanced enhanced
algorithms  algorithms

Figure 5: Mostly used optimization techniques according to the current review.

Likewise, Figure 6, titled "Reviewed Case Studies global distribution and intensity" plays a critical
role in illustrating the geographical diversity and focus of research within the domain of reservoir
optimization using ML techniques. This visual representation captures data from various countries,
highlighting how research is not only widespread but also varied in intensity across different regions.
Notably, Iran emerges as the predominant country in this field of study, with 15 articles dedicated
to the topic, which underscores its leadership in implementing advanced technologies for water
reservoir management. This is followed by China, which is represented in 8 articles, indicating a
significant concentration of research activity.

The map (Figure 6) further serves as a tool for evaluating the current landscape of global research,
suggesting areas with high research activities as well as regions that might benefit from increased focus
in the future. This distribution insight is vital for scholars and policymakers aiming to understand
where knowledge gaps exist and where future studies could be directed to leverage ML for enhancing
reservoir management practices. It also suggests a trend where ML techniques are being adopted in
diverse contexts, reflecting broader applications in the field.

Despite these successes, significant limitations remain. Ensemble and neural network models,
while powerful, often face computational intensity and scalability issues, limiting real-time application.
Regularization models, although effective in feature selection, may struggle with data sparsity and
noise. Decision-tree algorithms can be prone to overfitting and may require extensive cross-validation
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Reviewed Case Studies global distribution and intensity

Figure 6: Map qf the regions hosting the reviewed reservoirs/dams and their intensity.

and tuning to maintain generalizability across different scenarios. Future research should address these
limitations by enhancing real-time data integration and developing adaptive learning mechanisms to
improve model responsiveness. There is also a need for hybrid models that combine the strengths
of various ML techniques to provide more holistic and accurate predictions. Incorporating socio-
economic factors and climate change impacts into these models will be critical for sustainable water
management. Finally, improving the interpretability and usability of ML models will ensure that
they can be effectively utilized by reservoir operators and policymakers.

6. Conclusion

The present study reviewed previous research papers dealing with the application of machine learning
techniques in dam and reservoir operations. Applications of ML models in predicting reservoir inflows,
optimizing water release schedules, and managing flood risks have been studied extensively over
the past years. Previous studies that used ML-based models, such as Neural Networks, Genetic
Algorithms, Decision Trees, and Ensemble Methods, were explored as key components in enhancing
the efficiency and accuracy of dam operations. Significant attention has been given by researchers to
address the complexities posed by climate variability and increasing water demands.

The ML models demonstrated acceptable solutions for optimizing dam and reservoir opera-
tions. Based on the results obtained from several literature studies, advanced ML models like Long
Short-Term Memory (LSTM) and Convolutional Neural Networks (CNNs) showed substantial
improvements in forecasting accuracy and decision-making processes. However, there are some
drawbacks and shortcomings for these techniques that can be observed during their application, such
as computational intensity, scalability issues, and the need for real-time data integration and adaptive
learning mechanisms.

This research highlighted the efforts made to develop predictive models based on ML methods. It
was illustrated that ML-based models have the ability to predict inflow parameters with a good level
of accuracy. Modern models, such as integrated predictive models, are more effective and reliable
compared to the classic versions. More recommendations to develop hybrid models combining ML
with traditional optimization techniques have been listed. To operate dam and reservoir systems
under realistic conditions, a new simulation procedure has been proposed. This procedure involves
combining predictive models with optimization algorithms while searching for optimal operating
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rules and evaluating their performance. This approach aims to pave the way for more effective and
sustainable dam and reservoir management practices.
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