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Abstract
The best practice of watershed management is through the understanding of the hydrological processes. As
a matter of fact, hydrological processes are highly associated with stochastic, non-linear, and non-stationary
phenomena. Hydrological processes simulation and modeling are challenging issues in the domains of
hydrology, climate and environment. Hence, the development of machine learning (ML) models for
solving those complex hydrological problems took essential place over the past couple decades. It can be
observed, hydrological data availability has increased remarkably, and thus computational resources has led
to a resurgence in ML models’ development. It has been witnessed huge efforts on the hydrological processes
modeling using the facility of ML models and several review researches have been conducted. Literature
studies approved the capacity of ML models in the field of hydrology over the classical “traditional models”
based on their forecastability, flexibility, precision, generalization, and modeling execution convergence
speed. However, although several potential merits were observed in ML model’s development, several
limitations are allied such as the interpretability of those black-box models, the practicality of the ML
models in watershed management, and difficulty to explain the physical hydrological processes. In this
survey, an exhibition for all the published review articles on the development of ML models for hydrological
processes and recognize all the research gaps and potential research direction. The ultimate aim of the
current survey is to establish a new milestone for the interested hydrology, environment and climate
researchers on the applications of ML models.
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1. Introduction
1.1 Interest for watershed management
Watershed characteristics and management have a complicated and multidimensional interaction. A
watershed’s features, including its topography, geology, hydrology, and vegetation, are important
factors in identifying the management approaches that might be employed to preserve and improve
the watershed [1], [2]. For instance, a watershed’s hydrology, which includes its flow patterns and
water storage capacity, can be influenced by its topography and geology. Determining the best
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management tactics to safeguard watersheds from erosion, flooding, and other hydrological risks
requires knowledge of this information [3]. A watershed’s vegetation can be extremely important
as well to its management; for instance, trees and other vegetation can remove contaminants from
runoff, thereby assisting to stabilise the soil, reduce erosion, and preserve the quality of the water [4].
They also support the watershed’s biodiversity by giving wildlife somewhere to live. A watershed’s
hydrology plays a significant role in the watershed management. Water storage and flow patterns in
a watershed can impact the water quality, health of aquatic ecosystems, erosion and sedimentation in
the watershed [5], [6]. To reduce adverse effects on water resources, optimum management methods
for urban and agricultural development, as well as the placement of water retention structures, can all
be informed by an understanding of hydrology [7]. For watershed management plans to be effective,
the watershed’s specific features must be considered. In a watershed with a high-water table, for
instance, a wetland restoration project would be different from one with a low water table.

Making decisions about water resource management involves critical thinking, critical knowledge,
and wisdom in addition to interdisciplinary approaches for identifying potential actions and assessing
their impacts [8], [9]. The physical science, along with technology, aid in managers’ understanding
of water resources and environmental issues. Satellite data-based dashboard can serve as a great
decision-makers guide throughout the entire process [10]. In other words, a decision-making
system can be established in the form of dashboard based on geographic information system, an
interactive computer system created to assist decision-makers in using information, documents, data,
communication technologies, and models to complete the tasks involved in the decision-making
process. In conclusion, a watershed’s features—such as its topography, geology, hydrology, and
vegetation—are crucial in defining the management approaches that can be applied to preserve and
improve the watershed. The creation of efficient management methods that are suited to the peculiar
features of a watershed requires an understanding of the distinctive qualities of each watershed.

1.2 The concept of hydrological cycle
Water movement on, above, and below the surface of the earth is called the hydrological cycle or the
water cycle [11]. The interdependent and interrelated processes that comprise the hydrological cycle
are essential to preserving the planet’s water balance. The hydrological cycle’s primary processes
include transpiration, evaporation, infiltration, and runoff [12]. The process by which water falls
from the atmosphere as rain, snow, sleet, or hail is referred to as precipitation. This water can
either run off into surface water bodies like rivers and lakes or seep into the ground to replenish
groundwater aquifers. The process that releases water vapour into the atmosphere from the Earth’s
surface is called evaporation [13]. The ocean’s surface is the main source of this activity, although it
can also come from lakes, rivers, soil, and vegetation. The process by which plants absorb water and
release it into the atmosphere through microscopic holes in their leaves is known as transpiration.
This mechanism aids in controlling the amount of moisture in the atmosphere and on the surface of
the land, making it crucial for the water cycle. Water from surface runoff or precipitation penetrates
the ground and integrates into groundwater aquifers through a process called infiltration; this is
an essential process for replenishing the groundwater supplies, which are vital to both natural and
human systems. Again, water moves from the land surface into surface water bodies, such as rivers
and lakes through a process called runoff. This process is crucial for moving water and dissolved
nutrients from the land to the oceans, as well as for preserving the water balance in these systems.
All these processes are interrelated and dependent on one another; for instance, transpiration and
evaporation contribute to the atmosphere’s water balance; infiltration and groundwater recharge are
necessary for the land surface’s water balance; precipitation and runoff are crucial for the surface
water bodies’ water balance. Understanding the interdependencies among these mechanisms is
crucial for the appropriate administration of water resources, as well as for appreciating the effects of
climate change and human endeavours on the hydrological cycle [14].
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1.3 The motivation of machine learning implication for hydrological process
The hydrology cycle is a complicated nonlinear system typified by processes and events whose
dynamics, in addition to the fundamental human interactions, depend on numerous direct causes
(such as meteorological and environmental conditions) [15]. As a result, it is commonly known
that conceptual, systematic, and results uncertainty are common in hydrological models [16]. The
aforementioned facts have led to significant research efforts to build various model structures, such
as mathematical, statistical, physical, stochastic, and numerical models. Amidst many technologies
and approaches, Machine Learning (ML) models—highly sophisticated nonlinear computer-assisted
models with the ability to extract features, patterns, or rules from datasets—have been exponentially
growing in use for data-intensive hydrological modelling tasks [17], [18]. Many nations all around
the world have experienced drought and water stress in recent years [19]. Water resources are
critically declining due to the extreme lack of precipitation and the excessive demand, putting the
food security of many nations in jeopardy. Many scientists are considering sustainable ways to
enhance the management of water resources and sustainability as a result of this global issue [20].
Some of the more creative technological solutions that have come up include the intriguing ideas for
increased automation and flexibility in computer-assisted models.

The application of systems that can assist decision-making in matters like watershed management
and operation has opened up new possibilities in the realm of soft computing thanks to the emergence
of ML models, Big Data, and high-performance computing approaches [21], [22]. "Learning refers
to any process by which a model improves performance from experience," as per Herbert A. Simon.
The information could contain secret knowledge that clarifies the principles, laws, and logic of a
complicated occurrence. Therefore, ML models are informatively defined as technologies that can
automatically extract relevant information from data through advanced analysis. ML models can be
used to replicate various hydrological processes considering their inherent capabilities [23]. These
algorithms fall into four categories based on the type of training data they use; these are supervised
learning, unsupervised learning, reinforcement learning, and semi-supervised learning [24].

With supervised learning, an unknown (input and output) is predicted from known instances
(input and output), where the output is labelled. The computer will pick up information more quickly
from known samples. These tasks can be classified into two categories: regression, which predicts
a certain point on a numerical axis, and classification, which predicts an object’s category [25]. In
essence, regression is classification in which a number is predicted rather than a category. The Naive
Bayes, Decision Tree, Logistic Regression, K-Nearest Neighbours, and Support Vector Machine
algorithms are the most often used ML models for supervised learning tasks. Unlike supervised
learning, the task of unsupervised learning involves providing the learning system with merely
input samples. Considering that the data is unlabelled, the modelling task is just aimed at presenting
the information in a way that will enhance understanding. This is frequently called generalisation,
dimensionality reduction, or clustering. The commonly used techniques for unsupervised learning
are K-means clustering, mean-shift, Singular Value Decomposition (SVD), Principal Component
Analysis (PCA), and Latent Dirichlet Allocation (LDA). The basis of reinforcement learning is
feedback; only in a dynamic setting is training data sent to a system as feedback. The feedback
between the learning system and the interaction experience aids in improving the performance of
the task to be learned.

1.4 The survey inspiration and objectives
Hydrologists have been always pursuing research for reliable solutions for future prediction/forecasting
of hydrological processes e.g., river flow, rainfall, evaporation, evapotranspiration, infiltration,
groundwater level, etc. In addition, other associated variables such as soil temperature/moisture,
landslide, and water quality [26], [27]. Physical based models are usually associated with evident
limitations such as the serious need to field observations and studying the uniqueness of specific
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watershed characteristics [28]. On the other hand, mathematical models are incorporated with
uncertainties and parametrizing tuning [29]. Over the past couple decades, a massive attention
was devoted to promote the feasibility of computer aid models “i.e., machine learning” in the field
of the hydrology, climate, environment and earth science [14], [30]–[32]. ML models have been
widely introduced to solve hydrological processes and various versions explored such as artificial
neural network, support vector machine, genetic programming, fuzzy logic. Nevertheless, the
recently explored version of deep learning (DL) models which are vantage to be the mainstream in
hydrological processes prediction and leverage to be predominant in hydrology as a tool [33]–[35].

(a)

(b)

Figure 1: (a) The main keywords occurrence for the scopus search of machine learning and hydrology; (b)
Interested countries in the domain of the hydrological applications using the potential of machine learning
models.

By exploring the Scopus database for the keywords search “machine learning AND hydrology”,
632 research articles displayed for this search. Although, ML is not essentially dated back term for
few decades back; however, the research outcome clearly revealed the popularity of those advanced
technologies in the domain of hydrology. The total number of keywords for the research results was
5975, Figure 1 displayed the occurrence of 6 keywords with 532 keywords. What can be understood
from this biographical presentation, ML models have been explored nearly to all related hydrological
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process that are possibility experienced at certain watershed area (Figure 2). Over 80 countries have
been noticed to show interest in the applicability of ML models and their remarkable solution for
related hydrological processes. This was one of the significant motivations for the current review
article where the current direction would be more important to be recognized for hydrological
scientists and data science developers.

Hydrological sciences have seen a noticeable shift in the past few decades towards the use of
computer aid models “machine learning”, mostly for forecasting, prediction, and optimisation. There
is a global movement encouraging scientists to consider environmentally friendly solutions in the
field of hydrology by utilising cutting-edge technology like ML and the Internet of Things (IoT).
Different approaches have been developed and used, and they are suitably designed as a result of
the variety of ML models used in hydrological sciences. The goal of this review is to establish new
standards for ML applications in the field of hydrology. The primary goal of the study is to identify
the critical views that interested hydrological scholars need to know to fill the research gap. The
current review’s general outcome shows that ML models are superior, can generalise, are unique,
and that awareness should be given serious consideration.

Figure 2: The hydrological processes simulated over the literature review over the past couple decades using
machine learning models.

2. Literature review
In the current section, Table 1 presents the summary of the surveyed review papers and identifies
their number of reviewed papers, topics coveted, time spam for the survey, ML models, presented
limitations, and recognized possible future research directions.
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Table 1: The surveyed review articles on the applications of machine learning models for simulating hydrological processes.

Ref. No. Pa-
pers

Topics Time
Span

Models Research Limitations Possible Future Research Direction

[36] 96 > Forecasting water level in
surface, water formations.
> Creating models, map-
ping, and evaluating the
risk of floods.
> Simulation of sediment
movement within river net-
works.
> Anticipating water
demand in urban areas.
> Simulation of fluid move-
ment through hydraulic
structures.
> Modeling fluid and sed-
iment dynamics within
sewer systems

2000-
2019

> SWIM
> ANN
> MLPNN
> GRNN
> RBNN
> GMDH
> ELM
> PSO-RBNN
> Hybrid-
RBNN
> DT
> GRU
> MLP
> LSTM
> WNN

> ML models require long historical data and
high-quality data for optimal performance.
> The black box nature of neurocomputing
models hinders the explicit identification of
inner physical relations, limiting certain appli-
cations.
> One of the Limitation in ML models’ is the
competence in the applications with insuffi-
cient data, particularly in estimating flood dy-
namics and sediment concentrations in poorly
gauged or ungauged catchments.
> Few studies focus on long-term forecasts in
sediment transport modeling, with challenges
in realistic forecasting due to the use of ’future’
information in historical re-forecasting.
> Limited neurocomputing models for support-
ing long-term predictions in operational hy-
drodynamics and morpho-dynamics forecast-
ing.
> Challenges in generalization and accuracy
of neurocomputing models for water demand
prediction, with models often trained and val-
idated on specific case studies.
> Difficulty in cross-comparing results and lim-
ited validity for different settings in water de-
mand prediction models.

> Explore novel ML models (e.g., deep learning) for hy-
drological and hydraulic sciences.
> Ensure robust supervision of ML models, e.g., integrat-
ing ML with optimization algorithms.
> Conduct a comparative study on the efficacy of soft
computing models versus hard computing models in
hydrological sciences.
> Expand research topics to include groundwater mod-
eling, irrigation systems, water quality simulation, pre-
cipitation forecast, evaporation estimation, and rainfall
runoff processes.
> Integrate neurocomputing models with GIS for a seam-
less link between pre-processing andpost-processing.
> Investigate the hybridization of neurocomputing mod-
els with other soft computing concepts for improved
performance.
> Invest in research for the development of more effi-
cient and accurate hybrid models.
> Encourage further research on the application of DL
models (e.g., ESN, CNN) in various hydrological and
hydraulic scenarios.
> Need for future comparative studies to assess the sen-
sitivity, portability, and robustness of state-of-the-art
neurocomputing models across different case studies
and uncertainties.
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[37] NA > Cultural Barriers: Explores
ML-PBM differences in EES
and examines the impact
on objectives like predic-
tion.
> Hybrid Models: Merges ML-
PBM for effectiveness and
advocates co-creation over
borrowing.
> Knowledge-Driven ML:
Addresses ML challenges
in EES and emphasizes
knowledge-driven and
data-driven approaches

NA > DL > Cultural barriers pose challenges to collabo-
ration between ML and PBM.
> Differences in modeling objectives limit the
applicability of models in specific contexts.
> ML’s lack of interpretability hinders effective
communication of modeling outcomes.
> PBM scalability requires substantial modifi-
cations for diverse datasets.
> Limited process representation in PBM poses
challenges in capturing real-world system
complexities.
> The absence of model coevolution hampers
the potential for transformative innovations.

> Explore coevolutionary modeling to integrate ML and
PBM strengths.
> Develop models tailored for complex, multi-
dimensional spaces to enhance understanding.
> Focus on estimating and quantifying uncertainty in
both ML and PBM models to improve overall model cer-
tainty.
> Explore initiatives to break cultural barriers and foster
collaboration between ML and PBM communities.
> Develop interdisciplinary education programs for ML
and Earth and Environmental Sciences to ensure sus-
tainable training.
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[38] 160 > Overview of ANN mod-

els in hydrological variable
forecasting.
> Components of ANN
modeling: data preprocess-
ing, input determination,
model characteristics, and
assessment methods.
> Hybrid ANN models: in-
troduction, taxonomy, and
practical applications.
> Current obstacles in using
ANN models in hydrology.
> Recommendations in hy-
drological variable forecast-
ing using ANN models.

1998-
2015

> ANN mod-
eling for
hydrological
applications.
> Using soft
computing
approaches
for hydrolog-
ical variable
modeling.
> Hybrid ANN
models in hy-
drology.
> Hybrid ANN
models with
focus of data
intensive.
> Hybrid ANN
models with
focus of model
intensive.
> Hybrid
ANN models
with focus
of technique
intensive.

> The application of new approaches in ANN
is usually limited to specific indices, hindering
their assessment across diverse architectures
and variables.
> Restricted the availability of appropriate and
long-term data for water quality parameters
presents a challenge for developing models
and techniques.
> Evaluation of hybrid ANN models influenced
by the absence of standardized methodolo-
gies for combining ANN with alternative mod-
els and techniques.
> Shortage of a systematic method for identify-
ing the number of hidden layers in ANN mod-
els presents a limitation in the current state of
research.

> Develop systematic approaches for determining the
number of hidden layers in ANN models.
> Create new hybrid models by combining ANN with
alternative models and techniques from advanced re-
search in various engineering fields.
> Apply recent approaches to develop new models and
techniques for short-term or missing data, particularly
for water quality parameters.
> Extend the application of new algorithms and meth-
ods to various architectures of ANN models for a com-
prehensive evaluation.
> Conduct new studies to find the optimum number of
neurons systematically for each type of hydrological
variable, moving beyond the trial-and-error approach.
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[39] NA > A workflow to address pit-
falls and challenges in ap-
plying ML models to hydrol-
ogy.

NA > ANN
> SVM
> ELM
> RBF

> Increasing the number of observations sub-
stantially raises computational demands, pos-
ing a limitation in terms of scalability.]
> Workflow may present challenges in terms of
interpretability due to the inherent complexity
of machine learning models.
> There is a potential for bias in the estima-
tion of prediction accuracy, as evidenced by
the need to empirically estimate bias in the
results.
> The study relies on standard statistical met-
rics for model evaluation, which may have lim-
itations in capturing all aspects of model per-
formance.

> Understanding variable selection algorithms’ tenden-
cies with changes in training data.
> Exploring theory-guided data science to enhance ML
model interpretability.
> Extending the workflow’s application to finer temporal
resolutions and encouraging experimentation in fore-
casting various processes.
> Computational complexity of the proposed workflow,
especially with regards to variable selection algorithms.
> Impact of increasing the number of observations and
modeling at finer temporal resolutions on workflow
runtime.

[40] 101 > Streamflow forecasting
using AI-Models
> Streamflow modeling
with ANN
> SVM approach for stream-
flow forecasting
> FL for streamflow predic-
tion
> Evolutionary computing
methods in streamflow
modeling
> Wavelet-complementary
modeling for streamflow
prediction

2000 -
2015

> ANN
> SVM
> Fuzzy Logic
> EC (GA, PSO)
> W-AI

> ANN models face challenges like slow learn-
ing, local minima, and overfitting.
> RBFNN models have limitations in short
database forecasting.
> DNN models encounter difficulties accu-
rately modeling hydrological data.
> SVM models struggle in short-term scenarios.
> Fuzzy Logic models have limitations in han-
dling complexity and interval data.

> Development of a new architecture for streamflow
forecasting to enhance prediction accuracy and effi-
ciency.
> Preprocessing time series frequency, with a focus on
integrating FOS techniques for improved data prepara-
tion.
> Application of SI as a modern optimization approach
for refining forecasting models and enhancing overall
system performance

[41] 42 > AI-RS Publications trends.
> RS data evolution.
> Applications of ML meth-
ods in processing remote
sensing data for mineral ex-
ploration.

2003 -
2021

> ML (SVM,
DL, ANN, RF,
Clustering,
Regression
analysis, Di-
mensional
reduction
technics)

> Data-driven techniques may risk over-fitting
and problem dependence.
> The complexity and high dimensionality of
ML algorithms pose challenges for geologists
in their application to geological data.
> ML models still face a challenge in accurately
quantifying uncertainty in predictions.
> Complexity in ML models, coupled with a
lack of clear guidelines for settings and result
interpretation, presents challenges

> Investigation of uncertainty in predictions within re-
mote sensing-based model applications.
> GANs can be used to tackle class-imbalanced issues
in geo-science and RS by generating or reconstructing
data for imbalanced classes and missing regions.
> Accuracy-computational effort trade-off in data-
driven techniques, addressing risks like over-fitting and
problem dependence through additional research.
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[30] NA > ML Applications in Hydrol-

ogy
NA > ML (KNN,

Regularized
Linear Models,
ANN, CNN,
SVM, DTL, RF,
GBM, M5 and
M5-cubist, SG)

> Hydrological datasets often have correla-
tions, impacting model tuning, and cross-
validation.
> In hydrology, comparisons usually rely on ba-
sic metrics, possibly missing crucial aspects.
> ML growth in hydrology is tied to data avail-
ability challenges.
> Emphasizing model generalization, a perfect
fit on training data may not extend well.
> Hydrological processes’ complexity in-
creases different method comparisons.

> ML and DL gain importance in hydrology, with a focus
on reproducibility through code sharing.
> Explore synergies between ML and PB models, prompt-
ing new questions in mechanistic modeling.
> The low maturity of DL prompts extensive research,
especially in the context of learning from large unsuper-
vised data for "Big Data Hydrology."
> Anticipated rapid expansion of ML and DL in hydrology
includes ongoing investigations into SVMs, CNNs, and
RF, with expectations for new algorithms.
> Successful big data analysis in hydrology relies on
continuous monitoring and extension of hydrological
data, particularly in revealing patterns over decades.

[14] NA ML as a powerful tool to
help society to adapt the
climate changes in various
ways such as:
> Electricity systems
> transportation
> buildings and cities
> industry, farms and
forests
> carbon dioxide removal
> climate prediction, soci-
etal impacts
> solar geoengineering
> individual action
> collective discussion
> education
> finance

NA > ML > Transportation lies in its insufficient progress
in reducing CO2 emissions, with much of the
sector deemed challenging to decarbonize.
> ML requires the need for data access and
cleaning, and managerial caution due to po-
tential costly consequences, favoring risk-
averse strategies.
> Uncertainty and lack of clear guidance for
ML practitioners wish to apply ML to tackle cli-
mate change despite their recognized power
for technological progress.
> The highlighted impactful applications do
not constitute a single fix for climate change.
> There are areas where ML is inapplicable to
climate change solutions.
> ML can be applied in ways that exacerbate
the issue of climate change. It is widely used to
expedite activities like fossil fuel exploration,
and some ML models are energy-intensive to
train and run.

> Enhance ML for flexible energy systems, accelerating
the transition to carbon-free sources.
> Leveraging ML to optimize strategies for reducing
transport activity, improving vehicle efficiency, explor-
ing alternative fuels and electrification, and facilitating
modal shifts towards lower-carbon options.
> Leveraging ML to enhance energy efficiency strategies
by modeling data on energy consumption and optimiz-
ing energy use in smart buildings.
> ML for industrial emissions reduction shows promise
when there is accessible high-quality data, firms share
information, processes are adjustable, and incentives
align with emission reduction goals.
> ML can be used to monitor forest and peatland health,
predicting fire risks, and promoting sustainable forestry,
emphasizing alignment with decarbonization goals.
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[42] 180 > Review of employing ML
Models for Predicting Flood-
ing Events

2008 -
2017

> ANN
> MLP
> ANFIS
> WNN
> SVM
> DT
> EPS

> ML modeling for flood prediction is in its
early stages, limiting the maturity and robust-
ness of existing models.
> The success of novel ML models is contingent
on the effective use of soft computing tech-
niques, potentially limiting advancements if
not properly implemented.
> ANNs in flood modeling has drawbacks like
low accuracy, parameter tuning challenges,
slow learning response, and difficulties in
physical interpretation, especially in precip-
itation and peak-value prediction.

> Explore advanced hybridization and ensemble tech-
niques for improved performance and robustness in
flood prediction models.
> Investigate the application of data decomposition
techniques to enhance the accuracy of flood prediction
datasets.
> Explore the use of ensemble methods and optimizer
algorithms to improve model generalization and reduce
uncertainty in flood prediction.
> Incorporation of soft computing techniques for de-
signing novel learning algorithms in flood prediction
models.
> Research on spatial flood prediction using ML models
to address the unique challenges in predicting flood
locations.

[43] NA > Data-driven Modeling and
Computational Intelligence
Methods in Hydrology

NA > M5 MT
> ANN
> SVM
> FRBS

> Demand for computer memory in FRBS in-
creases exponentially with a growing number
of input variables.
> The effectiveness of DDM in a scientific do-
main area depends on factors such as the avail-
ability of a large sample of data.

> Combine diverse models, integrating physical models
for synergy in hybrid approaches
> Use computational intelligence for optimal, adaptive
structures in hybrid models.

[44] 129 The study incorporates DL
methods in the water sec-
tor, focusing on:
> monitoring
> management
> governance
> communication of water
resources.

2018 -
2020

> DL > ANN Tasks may require impractically large
hidden layers.
> The water domain lacks quality benchmark
datasets, hindering collaboration and model
improvement.
> Water data from authorities are dispersed
with temporal and spatial mismatches, mak-
ing acquisition challenging.
> Studies claiming DL use often rely on tradi-
tional ANN approaches, raising doubts about
DL application.
> DL and water studies lack method details,
slowing progress and reproducibility.

> Collaborate for DL-based hydrological forecasting us-
ing real-time data.
> Create open datasets to overcome the lack of DL-ready
water field data.
> Utilize centralized AI frameworks for custom solutions
in hydrological applications.
> Implement edge computing for sensor data process-
ing, encouraging innovation.
> Use intelligent assistants to extract knowledge from
vast hydrological datasets.
> Integrate DL with virtual and augmented reality for
immersive experiences in hydrological analysis.
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[45] NA > How well do ML models

perform without hydrolo-
gists?
> Applying rational feature
selection for enhanced hy-
drological forecasting.

NA > MLR
> M5P-MT
> MLP
> ANN
> LSTM

> ML models, including ANNs, lack clear ex-
planations for predictions and hydrological
processes.
> Performance deteriorates with increasing
model complexity. > ML models exhibit poor
performance, falling below the predictability
threshold on a 5-day lead time.
> Attempts to build a universal, data-driven
hydrological model with automatic structure
selection have been unsuccessful.

> Explore methods to enhance interpretability of non-
linear hydrological models.
> Develop visualization techniques for complex models,
particularly for black-box models like artificial neural
networks.
> Conduct comparative analyses of different model
structures, especially in contrasting catchment condi-
tions.
> Test hypotheses on the efficiency of rational feature
selection in catchments with specific characteristics.
> Explore ways to incorporate hydrologist expertise in
the model training process.
> Assess ML model generalization across diverse natural
conditions.

[46] NA > Applications of SVM in Hy-
drology

NA > ML (SVM) > SVM linearizes data through kernel transfor-
mation, making results accuracy independent
of expert judgment for non-linear input data.
> SVM heuristic selection of kernel function
and hyperparameters, relying on a time-
consuming trial-and-error process.
> Nonlinear SVR model complexity hampers
easy understanding and interpretation, result-
ing in a slower training process compared to
linear models.
> Poor model extrapolation occurs with past
data inconsistency, as the model heavily relies
on past records as support vectors.
> SVM produces only point predictions and
lacks design for probabilistic forecasts.

> Extend SVMs to tackle hydrologic inverse problems
incorporating a physical understanding of geological
processes, such as density estimation.
> Explore SI techniques, like artificial bee colony and
ant colony optimization, for hybridization with SVM to
achieve global optimal results in parameter selection.
> Investigate the Cloud SVM training mechanism in
a cloud computing environment with MapReduce for
large datasets, aiming for efficient and cost-effective
watershed model calibration.
> Focus on future hydrology modeling sophistication,
encompassing a wide range of natural phenomena to
understand watershed.
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[47] 113 > ML in hydrology 2002 -
2021

> AdaBoost
> XGB
> ANN
> MLR
> BMA
> SVM
> W-ANN
> SGB

> Limited data on soil and aquifer properties
challenges hydrogeological modeling.
> Ensemble methods are underused in hydro-
logical drought modeling, with sparse litera-
ture on machine learning as base learners.
> Ensemble techniques, particularly bagging
and boosting, may show inefficiency in rare
cases.
> Advanced ensemble methods like Adaboost,
XGB, and Dagging are still limited in recent
studies.
> Ensemble modeling mainly relies on tree
structures, neglecting models like ANFIS,
GMDH, GEP, deep echo state, and ELM.

> Explore diverse ML models in hydrological ensemble
modeling.
> Assess bagging and boosting methods’ performance
in hydrological modeling.
> Integrate ensemble strategies for improved learning
algorithm performance.
> Extend ensemble learning to diverse hydrological sci-
ences.
> Appraise ensemble learning importance in various
hydrological aspects.
> Comprehensive comparisons between ensemble mod-
els, individual models, and common hydrological meth-
ods are lacking.

[48] NA > The article explored op-
timizing information flow,
rules of use, and efficient
data utilization, emphasiz-
ing ML methods like DL and
active learning.
> Specifically applied ML
techniques to enhance wa-
ter resources management.

NA > ANN
> GPR
> SVM
> Lasso
> Clustering
> DL

> Small datasets and climate-induced changes
hinder adaptability.
> Complex model relationships limit physical
understanding and reliability.
> Limited training data affects model perfor-
mance across different regions.
> Hydrology suffers from inadequate data rep-
resentation due to scarcity.
> Varying data types and accuracies pose chal-
lenges to ML models.
> Many models lack methods to manage uncer-
tainty in hydrology’s limited data scenarios.

> Improve ML adaptability to changing conditions and
limited hydrological data through enhanced generaliza-
tion and spatial adaptability.
> Develop inherently interpretable ML models spe-
cific to hydrology and geosciences for better decision-
making.
> Integrate physical knowledge into ML by blending
process-based modeling with data-driven approaches.
> Address data limitations and biases by refining learn-
ing strategies for scarce and imbalanced datasets.
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[49] 36 > Understanding scales for

better watershed manage-
ment.
> ML role in predicting river
water quality.
> Advanced ML applications
in water quality modeling.
> Enhancing ML model se-
lection, explainability, un-
certainty quantification.
> Factors in using ML such
as scale, data, resources,
stakeholder needs.

2008 -
2021

> ML
> ANN
> LSTM
> XGBoost
> KGML

> ML models prioritize statistical relationships
over physical consistency.
> Limitations in extrapolating beyond avail-
able data.
> Challenges integrating scientific knowledge
into ML.
> Struggles predicting extreme events.
> Complex water quality data requires ad-
vanced ML representations.

> Advancements in model selection and hyperparame-
ter optimization for improved water quality models.
> Integration of domain knowledge into ML methodolo-
gies for more guided and accurate predictions.
> Exploration of transfer learning techniques to leverage
knowledge from related domains or datasets.
> Development of new data representations suitable for
handling complex water quality data.
> Explicit treatment of extreme events within models
for enhanced predictive capabilities.
> Focus on uncertainty quantification techniques for
more reliable predictions and assessments.

[50] 25 > This research empha-
sizes advancing AI’s role
in sediment transport
applications

2001 -
2014

> ANN
> ANFIS
> SVM
> Fuzzy Logic
> Wavelet-AI
Integrated
Model

> ANN faces challenges like overfitting, slow
learning, susceptibility to local minima, and
struggles with complex, non-stationary, dy-
namic, and nonlinear time series.
> SVM drawback is the selecting suitable kernel
parameters, especially for Gaussian kernels
and the insensitive loss function.
> SVM training and testing sessions are time-
consuming, unsuitable for real-time applica-
tions.
> GA have long training times, hindering quick
outcomes.
> GA can be sluggish for real-time applications
due to complex solutions. > Random conver-
gence of solutions is a drawback in GA, impact-
ing their effectiveness regardless of the fitness
function.
> GA consume considerable time due to the
involvement of numerous parameters in the
optimization process.

> Utilize OPLS and bidirectional O2PLS for data prepro-
cessing to maintain crucial information while eliminat-
ing unwanted variations.
> Develop two sub models based on discharge values
to accurately capture sediment behavior variations.
> Implement hybrid models like ANN-wavelet to handle
non-stationary and complex time series data effectively,
employing tools such as FOS for efficient noise elimina-
tion.
> Enhance the backpropagation in ANN by employ-
ing PSO, ACO, and other algorithms to overcome local
minima-maxima issues and improve sediment trans-
port estimation models.
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[51] NA > Overview of various AI
modeling frameworks used
in solving river sediment
problems

NA > ANN
> SVM
> Fuzzy
> BN
> Wavelet
Transform
> Nature-
inspired hy-
brid artificial
intelligence
Models
> Ensemble
artificial in-
telligence
models
> MARS
> CART
> Regression
model
> M5MT

> MLR and SRC models try to map hystere-
sis behavior accurately in sea level relation-
ships, making their comparison with highly
non-linear AI models unreasonable.
> Previous reliance on past SSL values as
model inputs put practical challenges in data
collection, particularly during extreme events.
> AI models designed for SSL modeling lack
applicability to different basins with different
morphological and climatic features, limiting
their generalization.
> The black box nature of AI models confuses
the interpretation of their physical founda-
tions, requiring further analysis for a clearer
understanding of parameter relationships.
> High spatial and temporal variability, as well
as skewed distributions in SSL and streamflow
data used for modeling, put limitations to the
effectiveness of AI models in SSL modeling.

> investigate cost-effective soft computing models for
hydrology studies.
> integrate nature-inspired optimization algorithms
with AI for hybrid predictive models.
> Use RFE to enhance AI models for sediment prediction.
> Explore nature-inspired optimization algorithms for
sediment modeling.
> Address AI drawbacks in basin applicability and inter-
pretability for SSL modeling.
> investigate ensemble learning to improve AI models
in sediment prediction.

[52] NA > Applications of DL in hy-
drology such as hydrologic
modeling, flood forecast-
ing, water quality indica-
tors.
> Use of CNN in time series
modeling.
> DL application in data-
limited settings, especially
in China.

2017 -
2020

> DL > Limited training data for extreme conditions
impacts reliability for rare events and puts the
DL in challenges.
> DL models may not capture fundamental pro-
cesses like rainfall-runoff responses, hindering
their transferability to other regions.
> While applying DL challenges exist to flow
and transport modeling in porous media due
to instrumentation difficulties and hetero-
geneity.
> Uncertainty quantification creates chal-
lenges across different DL model architec-
tures.
> Difficulty in reproducing 3D transient solu-
tions in physics-guided ML.

> Necessitate deep integration between DL and physi-
cally based models in hydrology research.
> Using process-based models to evaluate causal con-
trols and distinguish factors in hydrological processes.
> Require in-depth modification of DL algorithms fit to
hydrology’s specific needs.
> Developing techniques for reproducing 3D transient
solutions in physics-guided ML.
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[53] 209 > AI models Assessing ap-

plied in river water quality
simulation between 2000
and 2020, covering model
structures, input variability,
and regional investigations.
> AI model effectiveness
in addressing complex
data characteristics for
river water quality moni-
toring, management, and
policymaking.

2000 -
2020

> ANN
> Fuzzy Logic
> Kernel-
Based AI
> Complemen-
tary Models
> Hybrid AI
Models

> ANN models need extensive data, prone to
overfitting, and struggle with complex envi-
ronmental data.
> Fuzzy Logic model relies on rule-based func-
tions, struggles to prioritize crucial input fac-
tors effectively.
> SVM model success depends on careful ker-
nel and parameter selection, inefficient with
large datasets.
> Complementary models depend on wavelet
and level selection, leading to unpredictable
accuracy.
> NI algorithms encounter issues like prema-
ture convergence and limited improvement.

> Explore CE systems and DS systems to address com-
plexity, uncertainty, and inconsistency in river water
quality management.
> Investigate various AI models such as ward NN, hop-
field NN, kNN, DT, and DL to improve classification and
prediction in river water quality studies.
> Develop hybrid models combining AI strengths and
optimization techniques for effective handling of com-
plex, nonstationary data in water quality modeling.
> Regression models such as GPR, DT, RT, MT, GLM, and
ET necessitate further exploration to enhance their clas-
sification and prediction capabilities in river water qual-
ity research.
> Focus on unexplored optimization techniques like bac-
terial foraging, amoeba-based algorithms to enhance
model performance in water quality modeling.
> Pay attention to the architecture of model, calibra-
tion methods, and data allocation to optimize model
performance in river water quality.
> Explore WT potential with AI models to extract features
and denoise time series data in river water quality.
> Incorporate additional variables such as population
change, industrial influent to better identify pollutant
sources and predict sudden changes in river water qual-
ity.
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[54] 142 > Introduction to GP and its
variants in the context of
automatic program genera-
tion.
> Applications of GP in WRE
and its advantages in solv-
ing nonlinear WRE prob-
lems.
> Exploration of advanced
GP variants like multigene
GP, linear GP, gene expres-
sion programming, and
grammar-based GP.

1997 -
2018

> GP > GP has the limitation in accurately model-
ing spatial velocity fields when facing small
training datasets.
> GP models often produce complex formu-
las, making interpretation difficult due to
non-linear combinations of variables and
constants, thus becoming sensitive to input
choices.
> Raw data in GP models can lead to dimen-
sional inconsistency, necessitating techniques
like DAGP to ensure consistency in models.
> GP models lack physical interpretability due
to their inherent non-linearity, facing chal-
lenges in interpretation using explicit func-
tions.
> Overfitting is a common issue in GP, result-
ing in the evolution of sub-programs that offer
minimal or no performance improvement.
> Standalone GP and its variants struggle to
clearly identify complex relationships in com-
plex systems.

> New GP programs are required to be developed to han-
dle both binary and multi-class classification problems,
expanding the software capabilities beyond symbolic
regression.
> Complexity in GP solutions is crucial, requiring inves-
tigation of methods like DAGP and multi-objective opti-
mization to balance accuracy and interpretability while
preventing overfitting.
> To improve models for complex systems, researchers
could focus on hybrid GP models integrating techniques
like wavelet transform or moving average filters or cou-
pling GP with other AI approaches or physically based
models.
> Exploration of potential benefits of other GP variants
in WRE, beyond the commonly studied ones like mono-
lithic GP, DAGP, GEP, LGP, MGGP, and GGP is highly en-
couraged.
> Comparative analyses between GP and other AI tech-
niques could offer valuable insights into their perfor-
mance.

[55] 82 > DL and ML in Hydrological
Processes, climate change,
and earth

201 -
2018

> ML
> DL

> The accuracy drawbacks linked to models.
> The limitations of methods used for uncer-
tainty analysis.
> Significant computational costs related to
employing ML models.
> Needs for an extensive amount of data to
meet requirements.

> investigate algorithms to enhance ML and DL for mod-
eling hydrological processes.
> Employing new fields for effective use of ML and DL
methods in studying hydrological processes.
> Using hybrid and ensemble techniques to improve ML
and DL models in understanding hydrology.

[56] 140 > Flood management tech-
nologies.
> Image processing in flood
management.
> ML applications in flood
management.

2010 -
2020

> ANN
> SVM
> MLP
> ANFIS
> WNN

> Interpretative classification of research arti-
cles reveals bias due to subjectivity.
> The selected study period is between 2010 to
2020 and may limit the recent developments,
potentially impacting the comprehensiveness
of the study’s results.
> Limited use of ML-based methods in post-
disaster crisis management.

> Combining image processing and ML, for flood man-
agement requires investigation.
> Need for AI integration to enhance post-disaster pro-
cesses.
> More research requires to use AI-enabled big data for
flood management.
> Investigation of models predicting flood recession du-
ration for better recovery and reconstruction planning.



82
Z

aher
M

undher
Yaseen

etal.
[57] NA > ML concepts and methods

> Challenges in prob-
abilistic hydrological
post-processing.
> Predicting in hydrology us-
ing ML.

NA > Quantile
> Expectile
> Distribu-
tional
> Regression
algorithms.

> Quantile regression algorithms are not ideal
for predicting extreme quantiles.
> Quantile regression algorithms estimate pre-
dictive quantiles separately at different levels,
need additional automation and potentially
cause quantile crossing.

> Necessitate to explore the applicability of expectile
regression algorithms in probabilistic hydrological fore-
casting.
> Explore integrating complete predictive probability
distributions in large-scale benchmark tests to investi-
gate.
> Meta-learning in hydrological post-processing and
forecasting across different time scales and data avail-
ability conditions require to investigate.

[58] NA >Importance of streamflow
gauge data for flood fore-
casting and risk assessment
> Introduction of the
Streamflow Hydrology
Estimate using ML (SHEM)
model > SHEM’s reliance on
ML and big data processing
> Interpolation of estimated
discharge and time data for
inoperative stream gages.

NA > ML (SHEM) > Model faces challenges when historical re-
mote telemetry data for ungauged water catch-
ments are limited to shorter time periods than
required for training the ML model.
> Limitation to two key data parameters
(stream stage and time) to reduce complexity,
processing time, and computational require-
ments, severely impacting the model’s analy-
sis scope and accuracy.
> Dependence on time and computing re-
sources for building ML correlation indexes
and the availability of sufficient and accurate
historical streamflow datasets, affecting the
effectiveness and utility of the model.

> Extending streamflow estimates research by leverag-
ing SHEM’s underlying ML and analytical processes to
extrapolate estimated data from ungagged streams and
interpolate data estimates from gauged streams with
missing data.
> Exploring the application of SHEM in remote ungauged
catchment areas by incorporating RS technologies like
synthetic aperture radar, digital aerial surveillance, and
telemetry methodologies to generate stream gage data
and historical index datasets worldwide.
> Determining optimal locations for physical stream
gages, measuring discharge, and conducting remote
monitoring in inaccessible areas using SHEM.
> Applying a three-phase approach to estimate stream-
flow for ungauged regions based on the long-term pre-
diction analysis and duration curve prediction research.
>Studying the addition of other correlated streamflow
parameters, such as topographical attributes and pre-
cipitation parameters, to enhance the model’s accuracy
and efficiency when limited streamflow data histories
are available.
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[59] 37 > Focus on EC as an ad-
vanced ML approach for
modeling ET and its pro-
gression.
> The study aims to estab-
lish a new milestone by us-
ing the EC algorithm for ET
modeling.
> Conducting a review to as-
sess the feasibility and po-
tential of EC models in sim-
ulating ET across different
environments.
> Assessment and evalua-
tion of EC models in model-
ing ET based on the review
findings.

2007 -
2019

> ML (EC) > Estimating ETo reliably with limited mete-
orological data poses a significant challenge,
especially in developing countries.
> The limitation of using a two-data-division
procedure in modeling ETo is the assessment
of methods without independent data sets.
> Symbolic regression models using EC are
highly complex with numerous mathematical
operators.
> Existing temperature-based empirical mod-
els for estimating ETo are not effective for pro-
jecting ETo under climate change. Even with
rising temperatures, these models show a de-
crease in ETo due to the expected decline in
diurnal temperature range’s influence on ETo.

> Future studies required to develop ETo models that
utilize easily available meteorological variables, like
maximum and minimum temperature.
> Investigate to develop simple temperature based ETo
models suitable for reliably projecting ETo under cli-
mate change scenarios, considering the projected de-
cline in diurnal temperature range’s influence on ETo.
> Explore to create a generalized EC-based ETo model
to reliably estimate ETo for homogeneous climatic re-
gions by calibrating and validating the model with all
available station data in that area.
> Utilizing high-resolution meteorological satellite data
in ETo modeling, specifically in regions with scarce cli-
matic stations or missing required data, by calibrating
satellite data with information obtained from stations
to improve spatial modeling.

[60] NA > The imperative need to
adopt advanced ML meth-
ods for solving difficult
problems in porous media
and geoscience.
> Provide a comprehensive
review of recently devel-
oped methods in ML algo-
rithms and their applica-
tion in porous media and
geoscience.

NA > ML
> AI
> DL
> ANN
> Boosting al-
gorithms
> Principal
component
analysis
> Multidimen-
sional scaling
> SVM
> K-Means
Clustering
> K-Nearest
Neighbor
> CNN
> RF
> Autoencoder
> GAN
> LSTM

> Main drawback of LSTM is its inability to in-
corporate spatial information into data.
> The drawback regarding input data is that
certain areas in porous media and geosciences
lack enough data, requiring new solutions to
provide the required input for ML.

> Explore the application of recent DL models for under-
standing complex data and leveraging relevant data.
> Development of physics-informed AI models to incor-
porate complex physics into ML algorithms for porous
media and geoscience.
> Investigate solutions for input data challenges in ar-
eas with insufficient data for porous media and geo-
sciences.
> Studying of scientific interpretation of ML results
based on experimental and computational methods.
> To investigate the customization of current ML models
for specific problems in porous media.
> Integration of knowledge from big data and ML for
better synergy between the fields.
> Explore the benchmarking for ML algorithms in Geo-
sciences to enable systematic progress and confident
method selection.
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[61] 550 > Introduction to AI, includ-

ing its history, major cate-
gories, and current develop-
ment.
> Applications of AI in hy-
dropower and dam engi-
neering, emphasizing on
predictive modeling, real-
time monitoring, optimiza-
tion, and case studies.
> Exploration of current
and emerging technolo-
gies in dam engineering,
covering automated
decision-making systems
and AI-powered drones
for inspection, along with
addressing integration
challenges.

2002 -
2023

> AI
> ML
> DL
> NN
> Ensemble
> Regulariza-
tion
> Bayesian
> DT
> Dimensional-
ity Reduction
> Rule System
> Instance
Based
> Regression
> Clustering

Digital twins limitations:
> The necessity for a thorough and regularly
updated digital model poses challenges in its
creation and maintenance.
> Digital twins heavily depend on accurate and
dependable data inputs.
> Implementation faces drawbacks due to the
scarcity of standardized protocols and frame-
works.
Internet of things limitations:
> Security and privacy issues related to the
transmission and storage of data.
> Dependence on a powerful and reliable net-
work infrastructure for uninterrupted connec-
tivity.
> Issues related to hybridization and compati-
bility with older, established systems.
Drone Technology limitations:
>Constraints in flight duration and range, po-
tentially limiting coverage for expansive struc-
tures such as large dams.
> Impact of regulations and airspace draw-
backs on drone operations.
> Needs skilled operators and specialized train-
ing to ensure safe and efficient drone utiliza-
tion.
Remote Sensing and Satellite Monitoring Tech-
nology Limitations:
> depends on satellite availability and favor-
able imaging conditions, which might be re-
stricted in specific geographical areas.
> Data processing and analysis demands ex-
pertise in remote sensing techniques.
> Variations in accuracy and resolution of satel-
lite imagery impacted by sensor types and or-
bital configurations.

> Understanding and tailored algorithms for AI in dam
engineering.
> Enhancing data quality and availability in dam en-
gineering, encompassing dam behavior, hydrological
conditions, and environmental factors.
> Prioritizing algorithmic transparency and ethical con-
siderations in AI applications for dams, emphasizing
fairness, lack of bias, and transparency.
> Encouraging interdisciplinary collaboration between
civil engineers, data scientists, and stakeholders in AI
and dam engineering research.
> Identifying training programs to equip engineers and
stakeholders with AI-related skills for dam engineering.
> Exploring methods to incorporate uncertainty quan-
tification into machine learning models used in dam
engineering.
> Developing explainable AI models for dam engineer-
ing to ensure transparency in decision-making pro-
cesses.
> Enhancing data quality and accessibility through stan-
dardized collection methods and easier data availability
for researchers.
> Investigating edge computing for faster processing
and improved security in real-time data analysis for
dam engineering.
> Improving cooperation between AI experts and dam
engineers for effective AI model development and ap-
plication.
> Addressing issues of limited data growth in dam en-
gineering through strategies like data enhancement,
transfer learning, and collaborative data sharing.
> Focus on the role of ML/AI in optimizing existing dam
structures, innovative maintenance, and monitoring
techniques for enhanced safety, efficiency, and sustain-
ability in dam engineering.
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Cloud virtual and augmented reality technol-
ogy limitations:
> Depends on a stable internet connection for
uninterrupted access to cloud resources.
> Difficulties in hybridizing virtual and en-
hanced reality technologies into current work-
flows.
> Needs for proper training and user accep-
tance to ensure effective utilization.
Smart Robotics Technology limitations:
> Complicated integration and programming
are required for tailored robotic systems.
> Challenges in managing intricate or uncon-
ventional situations that might require human
intervention.
> Important initial investment costs associated
with the implementation of robotic systems.
3D printing technology limitations:
> Limitations in scalability for extensive
projects such as large-scale dam construction.
> Challenges in guaranteeing material quality
and structural integrity.
> Considerations about compliance with reg-
ulations and codes for extra manufacturing
within construction practices.
Building Information Modeling Limitations:
> Early setup and implementation costs may
be high for organizations transitioning to BIM.
> Necessitates training and adoption by all
project participants to maximize its benefits.
> Hybridizing with legacy systems and soft-
ware interoperability can be problematic.
> Dependence on the availability of standard-
ized BIM protocols and workflows.
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[62] 103 > Improvement in hydro-

logic modeling, especially
hybrid wavelet and AI-
based models.
> Applications and robust-
ness of Wavelet–AI mod-
els in predicting hydrologic
processes.

2003 -
2014

> Wavelet
> AI

> AI-based models face highly non-stationary
responses across various frequencies, impact-
ing their effectiveness without proper data
pre/post-processing.
> Fourier analysis lacks the ability to retain
time information during a signal’s transforma-
tion into the frequency range, making it im-
possible to identify specific event timing.

> Expand WT applications in hydrology beyond DWT
to include CWT for enhanced analysis within all-time
scales.
> Investigate WT use for spatial data preprocessing in
hydrological models, beyond its current focus on tem-
poral preprocessing.
> Explore alternative criteria, like energy similarities,
to select appropriate mother wavelets and decompo-
sition levels in wavelet-based models for hydrological
processes.
> More research is required on wavelet–AI models in
groundwater and water quality modeling due to re-
stricted existing studies.
> Explore benchmark datasets and an archive of
wavelet–AI models for certain hydro-climatologic pro-
cesses to improve transparency and efficiency.
> Hybridize wavelet–AI models with physically-based
models for spatiotemporal parameter estimation using
geomorphologic characteristics.
> Develop more review articles to explore applications
of hybrid models combining AI with different data pre-
processing techniques in hydro-climatologic studies.
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[63] 67 > Assessment of AI tech-
niques for modeling
groundwater levels.
> Review of popular AI
techniques for ground-
water level modeling and
forecasting.
> Determination of weak-
nesses in AI modeling and
the significance of review-
ing these procedures, espe-
cially in groundwater level
modeling applications.

2001 -
2018

> ANN
> ANFIS
> GP
> SVM
> Hybrid AI
techniques

> Traditional conceptual or physical-based
models for GWL modeling have drawbacks
due to their need for vast data and input pa-
rameters, which might hinder accurate pre-
dictions when data is limited and prediction
accuracy is prioritized over understanding un-
derlying mechanisms.
> AI models shown limitations in handling non-
linear and non-stationary processes.

> Combination of AI methods with conceptual-
numerical models like MODFLOW to address weak-
nesses of each model, reducing computation time and
enhance data availability between models.
> Focus on input consideration, emphasizing the sig-
nificance of GWL time series as a primary input and
exploring non-causal wavelets for comprehending hy-
drological variable interactions.
> Exploration of hybrid AI models for GWL simulation,
checking different AI techniques at different modeling
stages to optimize performance.
> Exploration into border effects and causality in
wavelet decomposition for GWL modeling, assessing
methods to handle decomposed sub-time series effec-
tively.
> Investigation of non-causal wavelet algorithms such
as trous and maximal overlap DWT for GWL forecast-
ing, addressing potential inaccuracies in wavelet-based
hydrological models.
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[64] NA > Assessment of ML tech-

niques in modeling ground-
water quality.
> Evaluation of various
ML models for predict-
ing groundwater quality
parameters.
> Assessment of improve-
ments, dominance, and
shifts in ML model usage
over time in GWQ modeling.

1994 -
2022

> ML
> Ensemble
> Semi-
Supervised
> Supervised
> Unsuper-
vised
> Fuzzy
> DT
> RF
> LR
> SVM
> ANN
> Comparative
> DL
> SOM
> Clustering
> Multiple
Frameworks
> Wavelet
> Genetic Algo-
rithms
> Bagging
Boosting

> Current ML studies’ weakness lies in findings
limited to certain study areas, causing discrep-
ancies in model performance, and hindering
wider applicability.
> ANN models face a critical weakness that de-
pends heavily on network structure selection.

> Focusing on best practices in ML application for hy-
drology, particularly in data handling and model assess-
ment.
> Investigating originality in studies, avoiding repeti-
tive descriptions of ANN application without significant
contributions.
> Studying the potential of DL in GWQ modeling and the
integration of lifelong learning and meta-learning for
improved performance.
> Employing explainable AI (XAI) to interpret and visual-
ize processes in ML models for broader applicability.
> Exploring underrepresented models and enhance-
ment techniques for GWQ modeling, including the in-
vestigation of genetic algorithms.
> Advocating for open-source materials, like code and
data, to establish standards and facilitate validation
across multiple study areas.
> Encouraging the application of ML to new geographi-
cal areas for GWQ assessment to test model robustness.
> investigating infrequently used parameters, such as
anthropological effects or long-term climate conditions,
to improve model validity in the face of future changes.
> Exploring for practical applications of ML in GWQ man-
agement, urging cooperation between data scientists
and authorities for effective implementation and as-
sessment.
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[65] 39 > DL methods in hydrology
and water resources appli-
cations.
> Integration of physics-
based hydrological models
with DL (PGDL)
> Advancements in DL mod-
els for sequential time se-
ries data.

2017 -
2023

> DL > Low availability of labeled datasets for hy-
drological modeling using DL or ML.
> Shortage of interpretability in understanding
processes and correlation within DL models.
> Challenges in achieving firm predictions by
combining domain knowledge with DL.
> DL models deal with capturing non-
stationary phenomena and uncertainties in
hydrological processes.
> Struggles in handling high volume, velocity,
and accuracy of real-time data for hydrological
applications.
> Significant computational resources re-
quired for DL models with large and complex
hydrological datasets.
> DL models face challenges in generalizing
across diverse regions and conditions.
> Difficulties in implementing effective tech-
niques for augmenting hydrological data using
DL models.

> Developing models to improve and augment labeled
datasets in hydrology.
> Generating inherently interpretable DL models for bet-
ter understanding in hydrological applications.
> Enhancing integration approaches for domain knowl-
edge and DL models for accurate predictions.
> Investigating novel DL architectures capable of han-
dling non-stationary phenomena.
> Exploring scalable frameworks for efficient real-time
data processing in hydrology.
> Expanding more efficient DL architectures and opti-
mization algorithms for hydrological datasets.
> Studying transfer learning methods robust across di-
verse areas and conditions.
> Developing techniques for effective enhancement of
hydrological data using synthetic data generation.
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[66] 138 > Significance of accurate

soft computing methods for
groundwater level predict-
ing.
> Enhancement in ground-
water level prediction us-
ing ML models over the past
two decades.

2008 -
2020

> ANN
> Fuzzy logic
> Neuro fuzzy
> Kernel
> DL
> Hybrid ML
> DT
> Data mining
> AI models
> Statistical
models
> NARX

> NARX networks have drawbacks including
over-fitting issues and susceptibility to local
minima.
> The Bayesian algorithm is suggested as a re-
liable training model to dwindle over-fitting,
but its performance might decrease when
used in conjunction with early stopping.
> Increasing the number of input variables
could hinder the reliability and precision of
the models.
> Exogenous parameters such as sea level rise
and GW abstraction significantly affect GWLs.

> Exploration of exogenous parameters like sea level
rise and GW abstraction’s impact on GWL, particularly
in coastal areas.
> Improved selection of GWL lags using ACF and PACF
approaches for AI modeling approaches.
> Employing feature selection techniques to enhance
model accuracy by selecting the most important input
parameters and eliminating redundant information.
> Emphasize predicting yearly GWLs for effective long-
term water resource management, especially in dry re-
gions.
> Assessment of additional genetic programming vari-
ants, like Linear GP or multi-stage GP, for GWL predic-
tion.
> Development of DL techniques to impute missing GW
values, reducing uncertainty and enhancing data qual-
ity for forecasting.
> Investigation of hybrid ML models integrating nature-
inspired algorithms with standalone ML models to opti-
mize hyperparameters for improved prediction capabil-
ities.
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[67] 43 > Reviewing hybrid models
integrating AI and optimiza-
tion techniques specifically
for streamflow prediction in
hydrology.
> Combination of AI and op-
timization techniques

2009 -
2020

> ANN
> SVM
> K-NN
> ANFIS
> GA
> PSO
> ABC
> GWO

ANN limitations:
> BPNN model’s accuracy reduces during weak
inflow reservoir stages.
> Shortage of established norms or fixed guide-
lines for suitable model design.
> Over-parameterization and overfitting prob-
lems in ANNs without maximal input selection
and early interruption strategies.
> Limited explanatory capability of ANNs for
their test answers.
> Uncertainty regarding the number of itera-
tions required for an effective outcome.
ANFIS Limitations:
> Sensitivity to alterations in cluster counts.
> Complexity of coding increases with the in-
clusion of additional rules. SVM Limitations:
> Insufficient efficiency when the number of
applications exceeds the number of samples.
> Use of K-fold cross-validation for likelihood
estimation without a standardized benchmark
for the K value illustration.
RF Limitations:
> Prediction can be slow when tackling a high
number of trees.
> Even though it performs parametric regres-
sion, the model remains a "black box" without
uncovering its internal workings.
> The model’s ability to make inferences be-
yond the training data is restricted, necessitat-
ing the training data to comprehensively rep-
resent the forest’s variability within the study
area.
ARMA Limitations:
> Long-term forecasting may have inadequate
accuracy.
> Nonlinear predictions are generally with low
accuracy and often not applicable.

> Adoption of more than three different AI models to
improve accuracy in study results.
> Focus on selecting the best integration of input vari-
ables to enhance model performance and result accu-
racy, with efficient data pre-processing.
> Significance of tuning model parameters, like hidden
layers, epsilon, and fuzzy rules, utilizing various algo-
rithms rather than relying on trial and error.
> Exploring global optimization algorithms, specifically
PSO and GA, in conjunction with local algorithms for im-
proved convergence on global or near-global optimum
in future studies.
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etal.
[68] 72 > Investigating a more ad-

vanced version of the ex-
treme ML for predicting
river flow.
> Comparing the EELM
model’s performance
with classical ELM and
SVR models using various
indicators.

2013 -
2019

> SVR
> ELM
> ANN

> Random weight initialization in the Sin-
gle Hidden Layer ELM model affects learning,
causing ineffective predictions.
> ELM’s application lacks memory for crucial
hydrological features, delaying advanced DL
processes like LSTM-based models.
> Limited resources delay experimental re-
search, advocating for CESC models in hydro-
logical science.
> ELM’s efficiency requires validation beyond
numerical accuracy, emphasizing practical im-
plementation for water resource engineering.
> Human activities’ impacting on catchment
behavior is absent in modeling, potentially in-
fluencing modeling results.
> Additional correlated weather and hydrolog-
ical variables are necessary for enhanced river
flow modeling accuracy.

> Explore DL ELM models with recurrent layers for en-
hanced weight determination and faster learning.
> Investigate LSTM-based ELM models for hydrological
forecasting, capturing time-series behavior and spatial
features with low complexity.
> Focus cost-effective soft computing models for solving
real societal obstacles in hydrology.
> Study of ELM model justification its efficiency practi-
cally for water resource engineering and as an expert
system.
> Investigate human activities impacting catchment be-
havior in hydrological modeling.
> Investigate additional correlated variables to enhance
river flow prediction accuracy.
> Develop reliable models to handle missing hydrolog-
ical data, particularly in developing regions, and re-
assess model validation techniques for higher perfor-
mance assessment.
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[69] NA > Significance of accurate
hydrological understand-
ing in managing water
resources amidst anthro-
pogenic climate change.
> Introduction of PaML as a
merging of hydrology and
ML paradigms.

NA > hysical Data-
guided ML
> Physics-
informed
ML
> Physics-
embedded
ML
> Physics-
aware Hybrid
learning
> HydroPML

Classical Physical Data-guided Neural Net-
works Limitations:
> Limitations in generalizing beyond specific
contexts.
> Necessitating computational requirements.
> Challenges in interpreting physical aspects
in the model.
> lack of ability to manage sparsity or non-
uniformity in temporal or spatial observations.
> High computational requirements.
> Relies on mesh-based or particle-based mod-
els, involving message-passing among small-
scale moving and interacting objects.
> Limited capabilities and robustness, espe-
cially in high-dimensional action spaces, lead-
ing to unknown behavior and convergence
speeds.
Deep Operator Networks Limitations:
> Inaccuracy in approximating complex physi-
cal dynamics.
> Instability and limited generalization.
> FFT-based basis functions often lack spatial
resolution, specially localized in frequency.
> Complexity, delaying interpretability and
making training challenging due to computa-
tional costs and restricted generalization.
Physics-discovery Neural Networks Limita-
tions:
> Difficulty arises from complex, non-linear
systems and imperfect data that are noisy and
incomplete.
> Limitations exist in acquiring high-fidelity,
noise-free measurements.

> Investigate PeML or hybrid models for better short
and long-term rainfall-runoff predictions.
> Develop robust spatio-temporal representations for
different regions and improve forecast reliability using
advanced PaML models.
> Address missing data, ungauged basins, and uncer-
tainty in rainfall-runoff predicts by hybridizing ML’s
transferability with physical models such as PiML, PeML,
and PaHL.
> Generate a thorough PaML-based hydrodynamic
solver spanning domains and incorporating RS and in-
situ data.
> Employ physics-discovery NNs or data-physics-driven
parameter discovery for better calibration of hydrody-
namic processes.
> Use generative models in PaML for simulating hydro-
dynamic processes under certain conditions.
> Combine physics knowledge into ML to improve un-
certainty characterization in hydrodynamic modeling.
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etal.
[70] 21 > Emphasizing the applica-

tion of DL in hydrological
forecasting parameters.
> Investigation of conven-
tional ML models for reser-
voir inflow and rainfall pre-
diction.
> Comparison of AI models
used in different hydrology
sectors, especially DL and
ML techniques.

2018 -
2021

> AI
> ML
> Supervised
> Unsuper-
vised
> SVM
> RF
> BRT
> DT
> Boosting
> DL
> LSTM

> ML algorithms face drawbacks in selecting
hydrological parameters that strongly corre-
late with the output for accurate predictions.
> DL algorithms need large amounts of data to
function effectively.

> Investigate comparative studies employing a wide
range of models to identify the most accurate algorithm
for predicting reservoir inflow.
> Employ diverse hydrological parameters to enhance
the precision of forecasting models.

[71] 39 > Comprehending the Chal-
lenges of Lake Water-Level
Fluctuation Prediction
> Progress and Impact of ML
in Forecasting Fluctuations
> Assessment of different
ML Models for Lake Dynam-
ics

2006 -
2020

> ANN
> SVM
> ANFIS
> WA-ANN
> WA-ANFIS
> WA-SVM
> GEP
> ELM
> DL

> Numerous research mainly used past water-
level data without including other significant
factors like inflow/outflow, rainfall, and evap-
oration.
> Overlooking influential elements might re-
strict the accuracy of the models in forecasting
lake water levels.
> Model Inputs: Emphasize only on past water-
level data without considering other key fac-
tors like inflow/outflow or rainfall, potentially
limiting model precision.
> Relying on common indicators such as RMSE,
MAE lacks more comprehensive criteria like
KGE, limiting a complete model performance
assessment.

> Assess how divers ways of splitting data influence
model performance.
> Utilize evaluation criteria such as KGE, AIC, and SBC
for evaluating models.
> Employ WDDFF as a benchmark when using hybrid
WA and ML models.
> Integrate WA, FA, and ML models to gauge their ef-
fectiveness together. > Estimate the performance of
enhanced ELM models.
> Identify the threshold when LSTM-based DL models
exceeds other models based on training data length.

[72] 68 > Historical progress of
groundwater modeling
techniques.
> Current application of ML
in forecasting groundwater
levels.
> Prospects and directions
for enhancing groundwater
modeling with a focus on
ML models.

2010 -
2020

> ANN
> SVM
> DT
> Fuzzy
> GA
> Ensemble
> Hybrid

> ML models struggle when handling non-
stationary data.

> Expand research on GWL prediction using ML in re-
gions with limited surface water, like Africa, parts of
Europe, and South America.
> Investigate in more studies the utilization of ensem-
ble learning techniques for enhanced accuracy in GWL
prediction, despite their limited usage in the reviewed
works.
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[73] 18 > Review of rainfall-runoff
modeling using ML models.
> Assessment of combined
and ordinary ML models
> Critically reviewing char-
acteristics, advantages, and
disadvantages of three com-
monly used ML approaches
for runoff simulation

2010 -
2021

> ANFIS
> ANN
> SVM

> on-linear intricacy of streamflow needs a
model that comprehends these complexities
well.
> Caution is required with the non-linear na-
ture of ML to avoid overfitting in run-off mod-
eling.
> ML approaches can offer higher precision in
run-off simulation but require effective input
parameter determination for optimal perfor-
mance.

> Employ newly developed optimization algorithms to
enhance ML model abilities.
> Explore the non-linear nature of ML to avoid overfitting
in run-off modeling problems.
> Investigate the potential of ML in computational hy-
drology, particularly in run-off predicting.
> Study hybrid mechanisms combining hydrological
knowledge with ML to enhance complex hydrological
predictions.
> Employ hybrid-based models integrating advantages
of both physical-based and ML-based models for run-off
simulations in water resource management.

[74] 1451 > Analyzing data’s impact
on weather, disasters, and
smart water systems in en-
vironmental management.
> Using ML, particularly DL,
for autonomous decisions
and system improvements
in environmental contexts.

2004 -
2018

> DL > Data cleansing issues due to different data
sources and IoT technologies.
> Lack of labeled datasets for effective ML.
> Discrepancy between data ingestion and gen-
eration speeds influencing real-time analysis.
> Lack of understanding of DL architectures
and best practices. > Necessitate for hybrid
ML and physics-based approaches for inter-
pretable solutions.
> Hefty cost associated with Big Data plat-
forms.
> Absence of data governance and sociotech-
nical structures for enhanced data quality and
accessibility.

> Scaling operations with AI and automated implemen-
tation for Smart Data.
> Humanitarian benefits through enhanced disaster re-
lief with Big Data and DL.
> Different applications showcasing Big Data and AI’s
potential.
> Improving causal inference and reasoning using Big
Data and DL.
> Enhancing situation awareness for forecasting short-
term and gradual Earth system changes.

[75] NA > Investigation of TGCO,
TGRO, and TGA to address
ML drawbacks: mitigating
model opacity, improving
convergence and general-
izability, but lacking evi-
dence on improving trans-
ferability.

NA > ML > Most ML models employed in hydrogeology
are often black boxes, lacking transparency.
> The effectiveness of theory-guided models
in enhancing the transferability of ML models
remains uncertain due to lack of studies.
> Limitations of ML models, includes the na-
ture of black-box, limited generalization, hy-
pothetical convergence, and uncertain trans-
ferability.

> Additional studies required to fill knowledge gaps on
the effectiveness of Theory-guided ML models in pre-
vailing ML drawbacks.
> Explore more studies on real configurations for gener-
alization of theory-guided ML models.
> Expand transformation functions aligned with theory
for full use of TGRO in hydrogeology.
> More investigations are required to clarify metrics to
quantify black-box nature and transferability prevailing
by theory-guided models.
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3. Hydrological process-based machine learning insights

Based on the exhibited literature review in this survey, the understanding and prediction of hydro-
logical processes have advanced significantly thanks to computer aid models. Numerous hydrological
phenomena, including precipitation, evaporation, snowmelt, soil moisture, streamflow, and ground-
water recharge, have been simulated and predicted using these models. The creation of mathematical
models known as physically-based models—which replicate the basic physical principles governing
hydrological systems—has made some headway. The relationships between precipitation, evapora-
tion, soil moisture, vegetation, and surface runoff for example are simulated by these models, which
include the Distributed Hydrological Soil Vegetation Model (DHSVM) and the Soil and Water
Assessment Tool (SWAT). Predictions of streamflow, groundwater recharge, and other hydrological
variables have been improved by using these models.

The development of ML models (e.g., DL, GP, ANFIS, DT, RF, SVM and ANN), has advanced
remarkably for different hydrological problems. These models can be employed to predict future
hydrological conditions by learning the correlations between input variables (such as precipitation,
temperature, and land use) and output variables (like streamflow and soil moisture) using historical
data. Hybrid models have also demonstrated the potential to enhance our knowledge and prediction
of hydrological processes because they exploit the best features of physically-based and data-driven
models. The use of satellite data for precipitation, evapotranspiration, and snow cover estimation is
one example of how remote sensing data has been utilised more frequently in recent years to enhance
model performance. In conclusion, there has been a noticeable advancement in understanding
and prediction of hydrological processes due to the emergence of mathematical models. Several
hydrological processes have been simulated and predicted using physically-based models, data-driven
models, and hybrid models and the performance of the models has been enhanced by the use of
remote sensing data.

The development and performance of ML models are hampered by several obstacles and limita-
tions, such as bias in variable selection, re-substitution validation, inconsistent validation procedures,
resamples for various algorithms, and model selection by the test set [76]. The main issue with ML
models is the selection bias of linked parameters, which results in selecting irrelevant predictions.
Selection bias is encountered when the same data are used for the selection of the related input
predictors and building a model from a training set. This effectively indicates that the process of
choosing the variables was not regarded as a component of the model-building procedure [23]. On
the other hand, model building without selection bias produces better results for the same data set but
the results are sensitive, and the same process of variable selection can produce different results if the
training set is slightly different [77]. This is due to the vagueness resulting from the variable selection
process can be significantly higher than the uncertainty pertaining to the model. The performance
estimates derived from this method, even if the best predictors are chosen, are biased because they
fail to account for the uncertainty surrounding the variable selection process and how it affects the
outcome [78]. Selection bias is more likely when using ML algorithms for hydrologic modelling
and forecasting because of short historical records, a high number of predictors, and sophisticated
and potent ML models.

Re-substitution validation, or validating a model using the same data it was trained on, is another
frequent problem. This could result in an optimistic performance estimation due to the issue of
overfitting that occurs when a model fits the training data too well and applies less well to "unseen
data," or data that was not included in the training set [79]. The validation dataset could be used to
ensure proper modelling training and prevent overfitting. K-fold cross-validation is one of many
approaches that is frequently used to validate models and guarantee generalisation for data that
has not yet been observed. Cross-validation, however, has the potential to produce estimates of
model performance that are biased [80]. The exposure of the model to the validation dataset (which
influences the choice of parameters, model, and hyper-parameter values during the subsequent
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training and validation phases) provides that the cross-validation estimate is often biased [81]. If a test
set proves unusable due to insufficient historical records, the performance estimates derived only from
cross-validation will probably be excessively optimistic regarding prediction accuracy. However, as
the performance estimates of each model are affected equally, the biased, optimistic estimates from
cross-validation can be utilised for comparing among a collection of models and choosing the best
model.

The use of distinct validation procedures and resamples for various algorithms presents another
challenge in the creation of machine learning models. There must be uniformity in the cross-
validation and resampling procedures for the various algorithms under consideration to be equally
affected by the performance prediction bias and to have equivalent model behaviours and error ranges.
Any data transformation or pre-processing undertaken during the data partitioning between training
and validation datasets must be done as part of the cross-validation procedure and not separately
beforehand. If the complete training/validation dataset was pre-processed independently beforehand,
this might be the result of (i) Knowledge of the mean and variance of the validation set during the
training phase, or (ii) Compromising the test data if the entire dataset is used. Leaks of this kind
affect not just the choice of the model but also the evaluation of the model’s prediction accuracy and
generalisation performance on unknown data.

Another concern is the application of the test dataset to algorithm selection or model hyper-
parameter optimisation [82]. Model hyper-parameters are ML algorithm settings or tuning pa-
rameters that determine a model’s flexibility or complexity and help govern algorithm behaviour.
Selecting a model based on the test dataset results in an overly optimistic or biased estimate of the
model’s performance, as well as information leakage from the test set to the model. Test sets should
only be utilised to predict the performance of models. While choosing a model and selecting the
final model, cross-validation results should be employed since they provide a more reliable viewpoint
on how well the model will generalise to new datasets.

Choosing the right input variable is essential to creating reliable ML models. According to recent
research, the model’s performance can be enhanced by carefully choosing the variables, and this
impact varies depending on the problem. The encountered problems in input variable selection are
mostly because the variable selection algorithm relies on both the model structure and input data
used to select the variables. For example, all potential predictors of streamflow generation processes
for a given research region must be considered to create a streamflow forecasting model, especially in
mountainous locations with significant variability. When combined with local hydro-meteorological
measurements, the use of large-scale climatic indices as predictors enhances the accuracy of streamflow
forecasting, according to several studies. Climate indices are usually employed in groups since climate
patterns are interrelated and no single index can fully explain all the climatic variability within a
river basin. Less interpretable machine learning models can result from constructing data-driven
models and evaluating their performance using the above-mentioned traps, since the models may
then contain redundant or unnecessary predictors. If the traps are not avoided, the produced model’s
future prediction accuracy may be overestimated, which could result in unpredictable, uncertain
model outputs. Additionally, the model may perform worse when generalising on data that has not
yet been observed.
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AIC: Akaike Information Criterion
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BN: Bayesian network
BRT: Boosted Regression Tree
BMA: Bayesian Model Averaging
CART: Classification and regression tree
CE: Coupling Expert
CESC: Cost-Effective Soft Computing
CWT: Continues Wavelet Transform
CNN: Convolutional Neural Networks
DWT: Discrete Wavelet Transform
DS: Decision Support
DTL: Decision Tree Learning
DT: Decision Trees
DDM: Data Driven Model
DAGP: Direct Acyclic Graph Programming
EC: Evolutionary Computing
EES: Earth and Environmental Sciences
EPS: Ensemble Prediction Systems
EC: Evolutionary Computation
EANN: Evolutionary Artificial Neural Network
ELM: Extreme Learning Machine
FRBS: Fuzzy Rule-based Systems
FOS: Fast Orthogonal Search
FA: Firefly Algorithm
GA: Genetic Algorithms
GWQ: Groundwater Quality
GWO: Grey Wolf Optimization
GP: Genetic Programming
GA: Genetic Algorithms
GPR: Gaussian process regression
GBM: Gradient Boosting Machine
GAN: Generative adversarial network
GRNN: Generalized Regression Neural Network
GRU: Gated Recurrent Unit
HydroPML: Hydrology in Physics-aware Machine Learning
Hybrid RBNN: Hybrid Radial Basis Neural Network
KGML: Knowledge-Guided Machine Learning
KNN: k-Nearest Neighbours
KGE: Kling–Gupta efficiency
LM: Multivariate linear
LSTM: Long Short-Term Memory
MLP: Multilayer perceptron
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MLP: Multilayer Perceptron
M5 MT: M5 Model Trees
MLR: Multivariate Linear Regression
MARS: Multivariate adaptive regression splines
ML: Machine Learning
NCMs: Neurocomputing methods/models
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OPLS: Orthogonal partial least squares
PSO-RBNN: Integrative Particle Swarm Optimization RBNN
PBM: Process-Based Modelling
PSO: Particle Swarm Optimization
PB: Process-Based
PSO: Particle Swarm Optimization
PGDL: Physics-Guided Deep Learning
PAML: Physics-aware Machine Learning
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SVM: Support Vector Machine
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SHEM: Streamflow Hydrology Estimate using Machine Learning
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SGB: Stochastic Gradient Boosting
WT: Wavelet Transformation
WRE: Water Resources Engineering
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