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Abstract
The importance of soil temperature (ST) quantification can contribute to diverse ecological modelling
processes as well as for agricultural activities. Over the literature, it was evident that soil supports more
than 95% of living habitats and food production on earth, and this demand will increase to 500 years’
times in expected consumption in 2060. This paper aims to analyses the contrastive approach to predict
the ST of a certain region with the help of different machine learning models, including Random Forest
(RF), Support Vector, Neural Network (NN), Linear Regression (LR) and Long Short-Term Memory
Network (LSTM). The study was utilized the hourly humidity, dew point, rainfall, solar radiation, and
barometer readings for the formulation of the models. Various performance criteria were employed to
evaluate the prediction skills of the models and the results depicted that the promising ability belong to
LSTM despite the acceptable prediction accuracy achieved by other models. The modelling outcomes
revealed that LSTM model attained the lowest root mean square error (RMSE = 3.3255) decreased the
average prediction error by 6% with regards to NN (RMSE = 3.4796), SVM (RMSE = 3.5766), and RF
(RMSE = 3.8128), and improved the prediction accuracy of LR by 15%. The model is in compliance with
the latest machine learning industry standards and allows low-cost experimental performances on low
powered edge computing devices.

Keywords: Soil Temperature; Geo-science engineering; atmospheric data; deep learning.

1. Introduction
Soil temperature (ST) demonstrates a vital role in various biomes [1]. ST is a very scrutinizing
tool that governs important variables and factors such as ecological and atmospheric variables,
chemical, and terrestrial systems [2]. In simpler terms, it can be described as the function of heat
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flux in the soil and the predominant cycles of heat exchanges between soil and the atmosphere [3].
Studying the ST at various depths provides vital information about different aspects of geothermal and
extrinsic atmospheric processes of specific regions and aids in research parameters, such as agronomy,
hydrology, the nitration cycle, and environmental sciences [4]. The prediction of these ecological
parameters, such as wind speed, ST, and relative humidity, is a necessary aspect of agricultural
sciences owing to the relationship of these parameters with solar energy [5], [6]. Variation in
ST can cause significant changes in the properties of soil, leading to consequent environmental
problems and an associated change in carbon footprints balance [7]. ST is connected to rainfall
and air temperature in each cycle of natural process. Many researchers have tried to establish the
relationship between ST and meteorological parameters at different surface soil depths (5, 10, 20,
20, 50, 100, and 150 cm). Other factors that have been studied include the moisture content of
the soil, rate of evaporation from the soil surface, plant cover, and surface albedo [8]. Heat transfer
mechanisms from the surface of the soil are important for the plantation of seasonal crops. ST has a
strong effect on the rate of germination and early growth of vegetative plants [9]. The greatest seed
germination cycles are only met when the optimum ST is available for growth [10]. Moreover, ST is
crucial for studying the exchange of energy and setting up correlations between the atmosphere and
the land. Thus, developing theoretical methods to accurately predict ST is important. Soil surface
temperature at various depths is spatially difficult owing to the availability of no specific methods.
ST has drastically changed under the influence of climate change, and it also impacts the green-up
date and environment [11].

The research established by environmental science practitioners demonstrated the effect of
temperatures in soil freezes and thaw states [12], deciding the seed harvesting dates [13], and
moreover it influences infiltration [14], soil water systems [15]. In the past current trends, extensive
use of machine learning techniques has been helping the meteorological and environmental sciences
to set up widely optimized harvest systems harnessing artificial intelligence (AI) [16], [17], [26],
[18]–[25]. Although ST is said to be an effective variable agricultural practices, only a few types
of research have developed data-driven forecasting models for its prediction. Thus, establishing
new and modern algorithm driven techniques is important to continuously evaluate the soil profile
and enhance the agricultural industry. Recently several studies were established in different field of
hydro environmental engineering using different AI-based models. However, a significant level of
challenges can still be attributed to this model, such as generalization [22]–[30]. According to nor free
lunch theorem there is no single model that proves to be the best in all types of data sets. In addition,
several scholars have proved that even when using similar datasets, there are still variations in the
performance for different models. Hence, it has become necessary to design a generally applicable
programmed AI models which can be realized over different local scales [31], [32].

Various studies have outlined comparative techniques for predicting ST from data available to
them, such as humidity, atmospheric pressure, heat escape from soil, and fusion of gases with the
soil surface [33]. These discuss the methods to implement AI to estimate the daily ST in distributed
regions [34]. For instance, Hanks et al. (1971) predicted ST as an inclusive function of time, and they
considered the initial temperature of the soil as a function of depth. The difference in his study was
created as the formula proposed could not be applied for two- or three-dimensional problems under
the soil surface. Bilgili (2010) stated that ST is determined by various meteorological parameters,
such as atmospheric temperature and pressure, wind speed, rainfall, relative humidity, and duration
of average sunshine received. Rai and Varma (2010) executed an investigation at Zahedan and
Ramsar stations with the help of multivariate regression. Considering the best and the worst-case
scenarios, the correlation was 0.94 and 0.64, respectively. Bilgili (2011) performed experiments
which overlanded a contrast scheme where he tested regression and artificial neural network models
in predicting ST in the Adana province of Turkey. The authors used a new set of atmospheric data
and monthly meteorological surveys, and he confined his result to the Artificial Neural Network
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(ANN) where he exerted that an ANN is a more principal method for ST prediction.

Similarly, Tabari et al. (2011) investigated ANN for estimating ST for specific regions and
approximated from the calculations that values of ANN models were better aggregates for enhanced
observations than traditional regression methods. He could find accurate temperature through the
model with depths up to 15 cm to 30 cm. Sulaiman et al. (2018) took the help of ANN models and
coupled Gene Expression Programming (GEP) for estimating daily dew points. Dew points are
effective parameters for data localisation in ST prediction but are limited to regional disparities. It
was assumed dew points to be a sublimation for ST prediction. Tabari et al. (2014) carried out the
propositional study where he used the ANN and multivariate regression (MLR) considering large
atmospheric data points and estimated ST up to 100 cm of soil depth at five sites in Iran. The results
were significant and explained the importance of relative humidity and mean temperature on soil
average temperature. Kisi (2006) also investigated the use of generalized neural networks, MLP neural
networks, and radial basis neural networks to estimate ST by harnessing meteorological surveyed
data. However, in more recent study, Samadianfard et al. (2018) showed a different method where he
proposed his study on ST by using wavelet neural networks (WNN) for profile analysis at depths. His
study established the fact that with increasing soil depth, the accuracy for predicting ST appreciably
reduces. Kazemi et al. (2018) demonstrated the supremacy of genetic neural network ensemble,
commonly called as GNNE combined with Neighbourhood Cleaning Rule (NCL) and least mean
squares (LMS) algorithm which outperformed other prediction methods of soil at different depths
based on regression for the prediction of daily ST. Furthermore, the author proposed to include
other fuzzy systems to make effective data decomposition algorithms that will help in constructing
the components in GNNE.

Most recent studies conducted by Singhal et al. (2021) which developed a three-layer feed
forward neural network models for the estimation of soil temperature in the Himalayan glaciated
region. For this purpose, different input combinations was trained and tested temperatures using
concurrent and antecedent air-soil temperature data. The results displayed the capability of ANN
based models to provide promising result for soil-temperature prediction. Alizamir et al. (2021)
compared the feasibility of novel deep echo state network (Deep ESN) model with three different
traditional AI models for the prediction of ST at various depth. Several inputs were combined based
on sensitivity analysis and the results were evaluated using statistical indices. The outcomes indicated
that Deep ESN outperformed the other AI-based models in both training and testing phase. Cao
et al. (2021) demonstrated the basis relationship between ST and mois-ture content at different
depth level using an empirical modelling techniques. Yaseen (2021) studied an insight into machine
learning for understanding the soil and water application using several AI based models, optimization
algorithms, deep learning model, and hybrid models. Andrade et al. (2021) employed the capability
of ANNs to simulate soil heat flux on land cover integrated with remote sensing and meteorological
reanalysis. Empirical model was also employed for comparison, the obtained results indicated the
robustness of AI-based models. However, most of the studies are performed on the data varying from
the regions such as Qinghai-Tibetan Plateau [49], Turkish Regions Turkish State Meteorological
Service [50]. They also reported a pattern of ST variation with increase in soil depth across 261
stations of Turkey while such ST changes were not seen in the regions. Insitu measurement of ST
and soil moisture is successfully implemented by the Tibetan Plateau observatory [49], which have
incorporated three regional scale regional networks equipped with satellite-based instruments and
remote sensing sensors. But these can only be used to investigate the surface temperature reference
and do not provide accurate ST at different depths across different regions. Many researchers have also
investigated different machine learning techniques to compare the best suitable model for accurate
prediction. One such investigation performed by [50] compared the three models for the same
across regions in Turkey. The ANN, adaptive neuro-fuzzy inference system (ANFIS) and multiple
linear regression (MLR) models were trained, and the outcomes depicted that AFNIS outperformed
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the other two models with RMSE score 1.99 and MAE 1.09 (indication for less errors thus more
accuracy). This was a significant study as a more vali-dated model was proposed for prediction and
the dependent variables resolved into simpler data points such as monthly minimum and maximum
air temperatures, calendar month dates, precipitation, etc [51], [52]. Based on the reported literature,
the Scopus database reported that there were 168 research articles starting from 2010 up to date
adopted over the literature using the feasibility of machine learning models for the ST prediction. In
Figure 1a, 262 keywords occurrence between those researches indicating the lack of deep learning
implementation for ST simulation. Also, the popularity of this research domain explored for 48
regions all around the world majority for China, USA and India (Figure 1).

Figure 1: a) the major keywords used over the literature on the ST simulation using machine learning models
(2010-2021), b) the investigated region for the ST prediction.

These studies have shown exemplary AI techniques for ST prediction, and each study has gradually
progressed with more proofs of accuracy for observations and efficiency at increasing soil depths
than the previous ones. However, these studies have only focused on an aspect of the problem, which
is the use of better AI techniques each time. This research corresponds to the fact that, by targeting
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modern deep learning models and easily fetchable data points for DSTs that can be calculated by
low energy powered edge computing devices. This study mainly considers the efficiency of the
computation of models and feeding the data acquired by low-cost devices across distributed regions
such as hills, steeps, plateaus, etc. Estimation of long-term and average monthly ST is necessary to
understand the properties of soil and acquire the numerical relationship of ecological variables. The
present study emphasizes the use of Linear Regression (LR), Random Forest (RF), Support Vector
Machine (SVM), Neural Network (NN), and Long Short-Term Memory Network (LSTM) and
compares the accuracy score for better ST prediction based on atmospheric data points at a certain
region.

The major problem with the ST prediction is the non-uniform nature of the variables that it
depends upon. For a specific region, the variables can have different values and sometimes, during
a major climatic change for a specific region, it becomes difficult to predict the ST based on these
environmental factors. The previous models have not completely demonstrated a solution tha can
address the problem of these rapidly changing parameters. Although, some researchers have made
an effort to increase the accuracy over the large distribution of these factors using hydro-climatic
parameters [53], there is no evidence on the effect of meteorological station over the ST prediction.
Deep ESN model is a good approach to increase the RMSE for the 5-input and 1-input models, but
concreted evidence over more distributed data could have given a proof for the single prediction
method. This is the major problem with the prediction of ST as discussed earlier due to the non-
uniform climatic nature of meteorological stations.

It is obvious that ST consists of complex processes, and it is complex behaviour are quite difficult
to explain by simple process. This is owing to the fact that most of the traditional and mathematical
methods were built on rough approximation that were known to be the conventional approach for
determining the prediction skill of ST phenomena. Being the fundamental modelling methods, the
traditional and physic-based methods explain the physical processes but still attributed with various
weakness such as, time consuming, computational burden, failure to capture chaotic, and complex
process. In contrast, it was known to overcome the above limitation but neglect the physical process,
particularly when focus is on the accuracy and reliability of the estimation rather than understanding
the simple physical process [54]–[57]. AI and traditional model were employed in our study. The
proposed model is cost-effective since lightweight ML models can be used to perform predictions
on edge devices with low computation power. This method can provide real-time temperature
predictions, and future values can also be predicted by using the forecasted weather conditions.
Enabling an integrated system for spontaneous ST prediction based on ecological data points. The
proposed model can be fine-tuned to predict ST of a specific region. This helps in surveying in the
depth of the region and enables soil profiling and modeling.

2. Materials and Methods

This section analyses the machine learning models formulation used in the prediction of ST with
various steps and processes involved. Schematically, it involves feature extraction and normalization
of the values. Normalization helps the algorithms to model the data correctly as the numeric values
of columns are set to a more common scale without disturbing the difference in the ranges of values
of information or losing values [58]–[61]. LR, RF, SVM, and LSTM models are used in independent
combinations to process the data (see, Fig. 2). Equation 1 is used to scale and normalize the data set
used in this study into a range of 0 to 1; this was done to ensure that the dependent and independent
variables were equally treated, and that their dimensions were minimized equally. Prior to AI
modeling, data normalization is commonly used to remove redundant data attributes and complex
numerical errors.
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y = 0.05 +
(

0.95 ×
(

x – xmin
xmax – xmin

))
(1)

For the machine learning task, 3 models were chosen - SVM, LR and RF. Feature extraction was
done on input features and data was normalized as shown in Fig. 2. The pre-processed data was
fed to the respective ML models and predictions were inverse normalized to obtain the predicted
temperature. One by one, all the three models were used and a comparative analysis was carried out.
For the deep learning neural network (DNN) model, the input features are normalized to change
mean to 0 and standard deviation to 1. The pre-processed features are then fed to a DNN and finally,
a linear output layer is used for inference as shown in Fig. 3. Adam optimizer was used to perform
back propagation.

Figure 2: The proposed ML Models.

Figure 3: Proposed DNN architecture.

However, In LSTM architecture, the input features are normalized and fed to a LSTM cell,
which consists of update, forget and output gates. The output of this cell is then fed to a dense neural
layer. Finally, a single size dense layer is used as an inference layer to obtain the output. Adamax
optimizer was used to perform back propagation as shown in Fig. 4. The dataset for this study has



Knowledge-based Engineering and Sciences 61

been obtained from five locations in North Dakota which is located in the centre of North America.
The five stations are climatically diverse, and the dataset obtained was recorded over 2010-2018.
The data comprises readings of ST to accurate 10 cm of soil depth. It consists of hourly, daily and
monthly ST patterns of the grand fork area. The study utilized the hourly humidity, dew point,
rainfall, solar radiation and barometer readings for formulating our prediction model. Further, the
data as well as target temperatures were normalized: z = x – u/sigma where, x is temperature, u =
mean and sigma = standard deviation as stated above. A total of 43,824 samples were used to train
our models. Validation split of was used to divide data. Training data size = 35059, Validation data
size = 8765. Further, the daily and monthly averages can be derived from the hourly readings.

Figure 4: Proposed DNN architecture.

The fitness of the model within an acceptable dataset depending on the employed indicators is
one of the key goals; this is to ensure that any unknown any machine learning or deep learning
model can be used to simulate any unknown dataset and achieve trustworthy and resilient results.
However, some concerns, such as local minima and overfitting demand the validation of the dataset
since the training performance may not be sufficient, particularly when the study used a very small
data set. Some of the available validation methods include cross-validation (i.e., k-fold), holdout, and
leave one out. To ensure that the issue of overfitting is prevented in this work, the k-fold validation
approach was used in this study [62].

2.1 Linear regression model (LR)
Linear regression is a simple technique that attempts to draw the relationship between two variables
by fitting a linear equation [63]. The two variables are distinctly identified as the explanatory variable
and the dependent variable [64]. The model is first examined for the suitability to perform the
regression (having one relationship is mandatory). For the analysis of Linear Regression: while loss is
not minimal: the output predictor variable Z is calculated as shown in Eq. (2):

Z = W · X + b (2)

where W is weights, b is bias, n is number of data points, alpha α is learning rate. The loss is defined
as:

l =
1
n
×

i=n∑
i=0

(Yi – Zi)
2 (3)
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Here, Yi is actual value and Zi is the predicted value, which is the difference between original
and predicted values.

dW = –
2
n
×

i=n∑
i=0

X(Y – Z) (4)

And,

db = –
2
n
×

i=n∑
i=0

(Y – Z) (5)

To calculate the gradients for weights and bias respectively. W = w – α× dw and b = b – α× db
are used to calculate the new values of weights and bias, thus completing one step of gradient descent
algorithm. In this work, two parameters (i.e., X and Y) have been considered for analysis of ST.
In this work, four different machine learning algorithm has been used. The array X consists of
data points: Humidity, Dew Point, Pressure, Rainfall, Solar Radiation, which are used as features to
predict the ST array Y. X = [Humidity, Dew Point, Pressure, Rainfall, Solar Radiation], Y = [Soil
Temperature].

2.2 Support vector machine (SVM)
At the discovery of the support vector machine (SVM) concept, it was considered an observer-based
learning method; however, SVM has been lately used successfully in several fields of chemistry, such
as chromatography, synthesis, spectroscopy, and spectrometry [65]. SVM is generally divided into
2 types which are Support Vector Regression (SVR) that is mainly used for prediction works, and
Support Vector Classifiers (SVC), mainly used for classification works. SVR can be denoted using:

f (x) = w× ϕ(x) + b (6)

where, w, φ, and b are the vector weight (shown in the feature space), the transfer function, and
the bias, respectively. The SVR function f (x) can be represented by demonstrating the regression
problems as follows:

Minimize
1
2

|0w|02 + C
N∑
i=1

(ξi + ξ∗i ) (7)

Subject to the condition:{
yi – f (x) ≤ ε + ξif (x) – yi ≤ ε + ξ∗i ξi, ξ

∗
i ≥ 0, i = 1, 2, 3, . . . ,N (8)

where C = the penalty parameter while ξi and ξ∗i are two slack parameters. The non-linear
regression function can be solved using the Lagrangian functions based on the optimization as
follows:

f (x) =
N∑
i=1

(αi – α∗
i )K (x, xi) + b (9)

where; K (x, xi) is the kernel function and αi and α∗
i are two variables; C, αi and α∗

i > 0.
Numerous kernel functions are available, such as linear, radial basis function (RBF), sigmoid, and
polynomial [66] but among these kernel functions, the most popular in the literature is the RBF
kernel and this is the reason for its utilization in this work. The RBF kernel is defined as:



Knowledge-based Engineering and Sciences 63

K (x, xi) = exp
(

–γ |0xi – x| 02
)

(10)

where, γ is the kernel parameter, which means C, γ, and ϵ are three parameters that are
responsible for SVR performance. A detailed description of SVR and SVM can be found in [67], [68].

2.3 Random forest (RF)
This is one of the effective supervised learning techniques that is mostly used for classification and
regression problems in machine learning. It comprises a number of decision trees on various subsets
of the dataset stream. It works on the concept of ensemble learning which aims to improve the
accuracy of the dataset by combining multiple classifiers to solve a complex problem [67]. For the
analysis of Random Forest (RF):

ni = node importance (11)

The variables used to represent the tree are w (weighted samples reaching node) and C (impurity
of node). To calculate the importance of each input feature are defined as:

feature importance =
summation (ni(j))
summation (ni)

(12)

To calculate the norms of all the features importance are defined as:

norm ( feature importance ) =
fi(i)

summation (fi)
(13)

To determine the final features used to form the RF tree is:

Random Forest features =
summation (norm (fi(i, j)))

number of trees [i = node i, j = tree j]
(14)

2.4 Neural network (NN)
Commonly called as the neural net, an Artificial Neural Network (ANN) or simply NN that resembles
the biological method of human process information through computational models. It contains
the basic unit of computation known as the neuron which is responsible for carrying the inputs
to different nodes of decision and data processing [69], [70]. The nodes consist of Multi-Layer
Perceptron (MLP) which is responsible to execute different functions on the received data. The best
advantage of a neural net is if a neuron is not responding, the network can still detect the error and
gener-ate the output. For the analysis of Neural Networks (NN):

Z1 = W · X + b1 (15)

The equation is used for 1st dense layer and activation function used for 1st dense layer is defined
as A1 = relu (Z1). The second dense layer is defined as Z2 = W · A1 + b2 with activation function
as A2 = relu (Z2). Finally, the final inference layer is defined as Z3 = W · A2 + b3. The gradient
calculation of back-propagation for the 3rd dense layer is defined as dZ3 = Z3 – Y and its weight is
calculated as dW3 = (1/n)∗ dZ3 ·A2. The gradient calculation for the bias of 3rd dense layer is defined
as db3 = (1/n) ∗ summation (dZ3), and for 2nd dense layer is defined as dZ2 = W2 · dZ3 ∗ g′ (Z2). The
gradient calculation for the weight of 2nd dense layer is defined as dW2 = (1/n) ∗ dZ2 ∗A1 and for
the bias of 2nd dense layer is defined as db2 = (1/n) ∗ summation (dZ2). The gradient calculation for
1st dense layer is defined as dZ1 = W1 · dZ2 ∗ g′ (Z1), weight is denoted as dW1 = (1/n) ∗ dZ1 ∗ X
and bias of 1st layer is defined as db1 = (1/n) ∗ summation (dZ1).
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2.5 Long short-termmemory (LSTM)
LSTM was conceptually designed by Hochreiter and Schmidhuber, to overcome the problem of
long-term dependencies of RNNs [71]. An RNN is not feasible in terms of accuracy of predictions
when the gap length increases. It is not suitable for persistent information. On the other hand, LSTM
can retain the information for a long period of time [72]. It is generally used for predicting and
classifying on the basis of time series data. For the analysis of LSTM:

U(t) = sigmoid (Wu[A(t – 1),X(t)] + bu) (16)

Equation (16) is defined as an update gate of LSTM. The Forget Gate is represented as:

F(t) = sigmoid
(
Wf [A(t – 1),X(t)] + bf

)
(17)

And output gate is defined as:

O(t) = sigmoid (Wo[A(t – 1),X(t)] + bo) (18)

The candidate cell and memory is defined as:

C ∼ (t) = tanh(Wc[A(t – 1),X(t)] + bc) and C(t) = U(t) ∗ C ∼ (t) + F(t) ∗ C(t – 1) (19)

The activated output function is notated as:

A(t) = O(t) ∗ tanh(C(t)) (20)

The dense layer output calculation is done on the basis of equation (21):

Z1 = W1 · A(t) + b2 (21)

The activation function used on dense layer as:

A1 = relu (Z11) (22)

And output layer inference is defined as:

Z2 = W2 · A1 + b2 (23)

where Wu=Weights for update gate, bu=bias unit for update gate, Wf =Weights for forget gate,
bf =bias unit for forget gate, Wo= eight for output gate, and bo=bias unit for Output gate.

The primary purpose of any modelling is to fit the model to the given data based on the employed
indicators to achieve reliable prediction on the unknown data set. Despite the promising ability of
some AI-based models (e.g., ANN) in the forecasting of nonlinear systems, the issue of over fitting
provides that there is a disparity between the achieved satisfactory training performance and the
testing performance. Hence, combining multiple performance criteria is essential for good analysis.
Different metrics were used to determine the performance accuracy; this was done by comparing
the measured values with the predicted ones. The models were evaluated using R2, MSE, and RMSE
as the evaluation indices [73], where:

R2 = 1 –

∑N
j=1

[
(Y)obs,j – (Y)com,j

]2

∑N
j=1

[
(Y)obs,j – (Y)obs,j

]2
(24)
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MSE =
1
N

N∑
i=1

(
Yobsj – Ycomj

)2
(25)

RMSE =

√√√√∑N
i=1

(
DOobsj – DOcomj

)2

N
(26)

where N,Yobsf ,YandYcom jaredatanumber,
observed data, the average value of the observed data and computed values, respectively.

2.6 Pseudo code
The pseudo code for proposed model gives a detailed explanation of how the model will execute
the process and take different environmental factors into account. Dense layer setup is explained in
Figure 5 which depicts the overall reducing the overfitting with the help of dropout regularization.
Relu is used as the activation layer for the same. Optimizer helped in compiling the model. The
model is compiled and fit into the validation data.

Figure 5: (a) Pseudo code for dense layer (b) Pseudo code for LSTM.

2.7 Sample Data analysis
The brief analysis of the sample data collected for this experimental investigation is given In Table 1.
The data is outsourced from different labelled data that provided a broad distribution of atmospheric
pressures and its corresponding effect on ST. The given data has logged the soil bare and turf
temperature, which are the target features. The predictor features consist of soil humidity, wind
speed, solar radiation and atmospheric pressure. The data is evenly distributed as per the region it
is collected from. It provides enough uniformity for the prediction of ST based upon these factors.
The data points are gathered from some meteorological institutes and climate prediction centres
from various regions and stations, as indicated on their official documented site on the internet.
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Normalization was necessary in order to maintain a common scale for the numeric values in the
columns which includes the attributes. The data, since it was gathered from different cited sources
corresponded to various regions and had some irregularities such as missing values or non-optimized
data. Normal distribution had to be created for this range set.

Table 1: Sample data for the analysis of environmental factors.

Humidity
(g.m-3)

Bare Temp
(Degrees F)

Turf Temp
(Degrees F)

Wind Speed
(mph)

Solar Radiation
(Lys)

Barometer Dew Pt.
(Degrees F)

Year

0 79.87 22.705 26.492 15.203 0.0 977.0 19.655 2015
1 87.60 23.005 26.688 15.037 0.0 976.0 22.288 2015
2 93.00 23.301 26.886 13.516 0.0 976.0 23.549 2015
3 92.10 23.612 27.070 14.224 0.0 976.0 24.410 2015
4 92.70 23.887 27.248 13.003 0.0 976.0 25.010 2015
... ... ... ... ... ... ... ... ...
43819 82.30 31.041 30.906 10.636 0.0 971.6 6.008 2019
43820 82.80 31.039 30.906 8.391 0.0 970.2 6.604 2019
43821 84.70 31.046 30.909 10.600 0.0 968.4 6.125 2019
43822 85.10 31.030 30.895 10.427 0.0 967.9 6.444 2019
43823 85.50 31.014 30.870 9.171 0.0 966.9 5.628 2019

3. Application Results and Discussion
The major motivation and contribution of this research is to develop and to comparatively study a
machine learning models (SVM, RF, NN, LSTM) and a linear model (LR) for the determination of
ST. In this section, the results obtained are demonstrated both in visualized and quantitative format.
A preanalysis on the raw data including maximum and minimum humidity levels is also marked on
the graphs to indicate that on days with low wind speed. Prior to the pre-diction pre-processing of
data was carried out using various methods including normalization, and standardization. For any
time-series data, pre-analysis of the individual data, i.e., the individual inputs, is paramount because
their ac-curacy can significantly contribute to determining the efficiency of the individual models.
Hair et al. [74] claim that a dimension’s variables are internally consistent if their Cronbach’s alpha
values are greater than 0.7. According to Dickey and Fuller, [75], the ADF test is used to assure
more reliable and valid outcomes as well as the stationarity of all variables. The data utilized in this
investigation confirmed that the unit root test met all of the stationarity requirements.

However, various graphs are obtained from the month-wise distribution of wind speed vs peak
humidity at fixed geolocation points in the North Dakota region (see, Fig. 6. On various days,
some trends were observed which helped in setting up the correlation between the variables such as
humidity, dew point, wind speed, etc. These parameters helped in predicting the ST by calculating
the average on that scale. The correlation analysis technique-based graph also determines the bearing
and level of correlation between the variables, and this helps in the formation of the 3 distinct classes.
The analysis further enhanced the understanding of the mechanism and science of the data by
displaying the required input parameter with the strongest correlation with the output variable for
the modelling process. This can also aid with experimental analysis, particularly model selection. As
a result, correlation analysis is the basis for the formation of numerous models used to observe the
practical influence of selected methods on the simulation process.

From the Fig. 6a it shows the daily wind speed variation for the 1st quarter of the year. Maximum
and minimum humidity levels are also marked on the graphs to indicate that on days with low wind
speed, humidity is generally high. Fig. 6b depicted that the daily wind speed variation for the 2nd
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Figure 6: Wind speed variation with Peak Humidity for (a) Jan-March (b) April-June (c) June -Sept (d)
Oct-Dec, and with Pressure Variation with Dew Point (e) Jan-June ( f) July-Dec.

quarter of the year. Maximum and minimum humidity levels are also marked on the graphs to
indicate that on days with low wind speed, humidity is generally high. Fig. 6c shows the daily
wind speed variation for the 3rd quarter of the year. Maximum and minimum humidity levels are
also marked on the graphs to indicate that on days with low wind speed, humidity is generally
high. However, Fig. 6d indicated that the daily wind speed variation for the 4th quarter of the year.
Maximum and minimum humidity levels are also marked on the graphs to indicate that on days
with low wind speed, humidity is generally high. Whereby Fig. 6e shows the pressure variation
on all days and for the first half of the year, dew point rises with decrease in pressure, and Fig. 6f
showed that the pressure variation on all days and for the second half of the year, dew point drops
with decrease in pressure.

In this section, the results of AI (LSTM, SVM, NN, and RF) and deterministic linear model (LR)
have been discussed in relative terms of the data collected throughout the investigation. Various
observations were recorded with the help of correlation between the dependent and independent
variables across five major models used for prediction of ST points. The SVM, LSTM, NN, and RF
models were implemented using MATLAB 9.3 (R2020a) while the LR model was implemented by
using EViews (version 9.5). According to Abba et al.[76] determining suitable hidden nodes is the
crucial aspect of any ANN modelling to avoid over-fitting caused by different factors. As reported in
several studies in the field of science and engineering, there is no particular standard for determining
the appropriate number of hidden neurons. It should be noted that the best hyper-parameter’s
structure was attained using trial and error for all four models. The Lavenberg-Marquartd algorithm
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was used in training the ANN model due to its excellent performance in relevant studies; it is found to
improve convergence speed and training effectiveness by resolving non-linear least squares problems.
For the SVM, RF, and LSTM modelling, various types of parametric functions and iterations were
explored using trial and error to identify the best structure.

The performance results of the four models are shown in Table 2. R2 score describes the
proportion of the variance in the dependent variable that can be easily predicted from the correlated
independent variables. A 100% score indicates that the two variables are completely in correlation
and a lower value would show a low level of correlation, indicating that the regression model is
not valid but not limited to all possible cases. This is well defined as the total variance explained by
the model/total variance. The MSE is defined as the taken average of the square of the errors. A
larger value indicates a larger error in the estimated values since it describes the difference in the
estimated values and what is estimated in the experiment. This is important for the study to propose
a more accurate and near to the correct values of the estimated ST points via the developed model.
RMSE defines the standard deviation from the estimated values in terms of the average of squares of
errors. This is more relevant to this study as it consists of large values for the prediction made on the
dataset. The higher the values indicate better performance of the compared model. It expresses more
accuracy when comparing the performance of dependent and independent variables of different
models. As it can be in Table 2, the best combinations were reported, and the results were presented
in both calibration and verification phases.

Table 2: Prediction accuracy results.

Calibration Phase Verification Phase

Techniques R2 MSE RMSE R R2 MSE RMSE R
LR-model 0.8050 49.3295 7.0310 0.8972 0.8000 49.2795 7.0199 0.8944
RF-Model 0.9425 14.5871 3.8193 0.9708 0.9375 14.5371 3.8128 0.9682
SVM-Model 0.9493 12.8423 3.5836 0.9743 0.9443 12.7923 3.5766 0.9718
NN-Model 0.9521 12.1573 3.4862 0.9758 0.9471 12.1073 3.4796 0.9732
LSTM-Model 0.9562 11.1087 3.3320 0.9779 0.9512 11.0587 3.3255 0.9753

Modelling ST from atmospheric data points using machine learning technique is paramount
important as mentioned in section 1. The results suggest different levels of efficiency of the predictive
approaches using the considered performance metrics. This is due to the fact that the level of
robustness of each model differs according to the nature of capturing the data pattern between the
input and target variables. In general, all the models (RF, LSTM, SVM, and NN) have shown a
certain level of accepted accuracy including the LR. Among the 4 models LSTM served as the best
model for the prediction of ST, this can be proved by considering the performance criteria (R2, MSE,
RMSE, and R).

The promising capability of the LSTM model is certainly not surprising, because it is an emerging
non-linear deep learning model and has shown better predictive ability in various studies [77], [78].
Even though the models cannot be ranked based on the achieved accuracies, the best prediction
accuracy was achieved by the LSTM and NN techniques in terms of ST behaviour modelling as the
models exhibited > 95% performance efficiency in the calibration and verification stages. However,
the overall accuracy of the models is satisfactory with regards to capturing nonlinear relationship
between predictors and their corresponding targets.

From the numerical observation with regards to goodness-of-fit and absolute error indicated that
LSTM (R2=0.9512 and RMSE= 3.3255), NN (R2=0.9471, and RMSE=3.4796), SVM (R2=0.9443,
and RMSE=3.5766), RF (R2=0.9375, and RMSE=3.8128, and LR (R2=0.800, and RMSE=7.0199).
Based on the performance skill of the four model it could be observed that LSTM model reduced the
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Figure 7: Radar chart showing the discrepancies between the prediction skill of the models.

prediction error averagely by 6% compared to NN, SVM and RF models and in-creases the prediction
accuracy of SVM, NN and LR up to averagely 1% and 15%, respectively. The marginal accuracy
attained by LR could be improved by developing the hybrid technique through the applications of
the optimizations algorithms or ensemble learning techniques as demonstrated by [80]–[83]. Note
that the promising estimations were observed at the calibration phase, which is generally used to
correctly calibrate models using known input parameters and targets. The verification process, on
the other hand, is critical in evaluating a model’s performance since it checks the level of accuracy
of the model based on unknown set values. The calibration set does not offer this advantage and
as a result, it is expected that a reliable model should exhibit stable and balanced performances at
the calibration and verification phases. Furthermore, the time series plot can help visualize the
comparative study of the models (see, Fig. 8); it is a sophisticated graphical representation of data
that provides a high-level overview, as well as a numerical summary of datasets. The plot sowed that
the best model is the one with the nearest prediction to the experimental values. Based on the spread
of the values achieved by the prediction and experimental models; the ranking of the models was as
follows: LSTM>NN>SVM>LR, showing that LSTM is the best among all the models.

The blue highlighted curves indicate the plot of the original values of ST at the specific geolocation
points and atmospheric conditions. The yellow highlighted curves depict the predicted ST points
collected from the LR model created for this study. For the RF model, the correlation between
the models has been majorly covered in the later part of the prediction. The initial instances were
quite low for this model. All the specifications were similar from the previous model. RF is capable
of handling missing values and is less impacted from the unnecessary noise due to the irregular
variation in the dataset obtained. Moreover, SVM model schemes out a similar trend to RF, but it
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Figure 8: Time series plot between the observed and predicted ST.

was quite more stable in the performance as the dataset was sparse and irregular. It can be observed
from the higher peak and the damping peak over the two models and comparing them. A little
difference was there between the actual value the calculated values of ST. It can be seen LSTM model
outperformed all ML models as well as the DNN. This is due to LSTM blocks have the capability
to keep a track of the data by using the gates present. MSE of 11.1087 is well under the limits for
predicting temperatures accurately. This study in line with one conducted by Singhal et al. [45]
which study different architecture of ANNs for the prediction of soil temperature in the Himalayan
glaciated region. The value of determination coefficient obtained was in the range of 0.8 to 0.9.
Others studies also proved the capability of AI based models in handling nonlinear chaotic system
such as ST modelling [7], [33], [84]–[86].
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4. Conclusions
Soil temperature has great potential use in determining the distribution of plants and the prediction
of the suitability of plant biodiversity. It affects many biological activities, humans, animals, and
cycles of ecosystems such as water movement, nitrification, transpiration, etc. Moreover, studying
the ST and soil profile helps in agricultural research to study about prolific growth and development
of roots and vegetative parts. ST also provides appropriate tools to capture the spread of plant diseases
and control methods of the specific bio-vegetative region. In the present research, we have drawn
a comparative analysis of determining the model for predicting ST by harnessing the atmospheric
data points. For the analysis, various machine learning techniques such as LR, RF, SVM, NN, and
LSTM were used on the meteorological dataset of North Dakota to create deterministic models for
collecting ST at various depths of soil surface. The data was collected from the atmospheric dataset
that incorporated the readings from an experimental investigation based on precision instruments. the
performance criteria. Various performance indicators including (MSE, RMSE, R2, and R) were used
to assess the performance evaluation of the models. Based on the performance skill of the four model
it could be observed that LSTM model decreases the prediction error averagely by 6% compared to
NN and SVM models and increases the prediction accuracy of SVM, NN and LR up to averagely
1% and 15%, respectively. The overall prediction results suggested that other optimization method
for example, genetic algorithms, ensemble learning techniques, nature and bioinspired algorithms
should be employed to improve the prediction results.
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