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Abstract
Accurate and precise forecasting for pan evaporation (EPm) is one of the essential processes for multiple
purposes of watershed decision making and sustainability. This is because EPm is highly influenced by
climate change and thus it is a highly stochastic weather process. In this research long short-term memory
(LSTM) and Gaussian process regression (GPR) models were used to forecast monthly EPm data. The
EPm data series were used to cover the period (1980 to 2020) and belong to two meteorological stations
located in the United States of America. One station has a tropical climate in Hialeah, Florida (station 51)
and the other has a Mediterranean climate in Markley Cove, California (station 9). The analysis was carried
out using the optimum window sizes for the LSTM and GPR methods, which were 4 and 7, respectively.
The modeling results indicated that the LSTM model reported maximum correlation value (R = 0.965) and
(R = 0.701) for Station 9 and 51 respectively whereas minimum root mean square error (RMSE = 0.611)
and (RMSE = 0.916) for station 9 and 51 respectively which outperformed the GPR model. Based on the
relative error diagram, 78% of the LSTM model’s results ranged between ±25%. In addition, the LSTM
model’s normal distribution of errors showed that the mean error and standard deviations for station 9 are
-0.0104 and 0.614 whereas for station 51 it was -0.026 and 0.921. For the same stations, the GPR model
mean error and standard deviation for station 9 are -0.016 and 0.753 whereas for station 51 were -0.026
and 0.921 indicating that the LSTM model outperforms the GPR model in forecasting monthly EPm. In
general, the development of the LSTM model as a dynamic soft computing model reported a robust and
reliable tool for EPm forecasting at different climate characteristics.

Keywords: Long short-term memory; Gaussian process regression; evaporation forecasting; Hialeah station; Markley Cove
station

1. Introduction
1.1 Research background
A type of natural process that is a part of the hydrological cycle that influences agriculture productivity
and water availability for human purposes is evaporation [1]. Various researchers have identified EPm
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as one of the complex elements in the water cycle process [2]–[4]. Despite this fact, accurate and
reliable methodologies for forecasting EPm rates are critical for effective water resource management
and reliably describing the water balance in natural and artificial water bodies [5]. EPm can be
measured and predicted in a variety of ways. The majority of researchers have conducted reviews on
these methods [6]–[8]. Over the literature, a plethora of authors uses empirical methods to predict
evaporation rate [9]. Furthermore, these models are widely used for predicting and calculating
EPm in various geographical locations [10]–[12]. Besides most of these methods require a huge
meteorological data as input. Access to meteorological data in all regions may not be possible
therefore it makes these methods hard to apply [13]. On the contrary, due to the complexity,
non-linearity and unsteady nature of evaporation providing a comprehensive and straightforward
formula that involves all the physical processes is difficult [14]. As a result, these problems highlight
the need for more adaptable and easily-operated evaporation prediction methods. Several researchers
have reported on the determination of EPm using empirical and semi-empirical formulas based on
various meteorological data [15]–[17]. Nonetheless, due to the use of various climatic factors, these
models possess limitations [4]. As a result, different approaches for forecasting EPm that require less
meteorological data are required [18].

1.2 Literature review
Data mining approaches that do not need prior knowledge of evaporation’s fundamental physical
processes or a large amount of data have recently received much attention and they are most certainly
effective in real-time decision support systems when made the comparison to conventional parametric
methods [4], [19], [20]. Artificial Intelligence (AI) techniques have been widely used in water resource
fields over the last few decades, and it is well known for predicting evaporation as well [21]–[24].
The main advantage of the AI techniques is being completely non-parametric, requiring no prior
knowledge of the relationships amidst input variables and output data [25], [26]. In addition to
this, various AI models and methods were used for forecasting monthly streamflow [5], [27], [28].
Machine learning (ML) model applications for evaporation process modeling have received much
attention by several researchers. In addition, they have shown remarkable successful implications
within ecological and water engineering issues in recent years [29]–[33]. AI systems are simpler,
more robust and capable of dealing with complex non-linear procedures with ease [34].

Even though AI-based models have good prediction performance, the majority of these stud-
ies employed several traditional AI algorithms that lacked a data prepossessing scheme optimizer
algorithm [4]. Furthermore, the effects of parameter interaction on model performance are not
adequately substantiated by current methods. Due to the previously mentioned concern, there is a
growing trend toward using evolutionary algorithms to adjust the internal parameters of AI models
and as a result, various scholars have attempted to solve the ANN training problem using a mixture
of various model optimization techniques. Some researchers combined advanced neural methods
with the firefly algorithm to obtain more precise evaporation measurements. Since then, the firefly
algorithm has been widely used to train ANN models in a variety of optimization problems [35].

1.3 Research motivation and contribution
Deep learning (DL) has received a lot of attention in recent years, thanks to neural networks.
As with hydrological modeling, the effectiveness of DL methods is greatly aided by advances in
computer technology, especially in the area of Graphic Processing Units (GPU) [36]; and ready
accessibility of large data sets [36]–[38]. Few DL algorithms are in the computer vision areas such as
[39], speech recognition [40], and Natural Language Processing (NLP) [41], however, there have
been few attempts of DL algorithms to hydrological problems. Many deep learning algorithms,
such as recurrent neural networks (RNN) and convolutional neural networks (CNN), have proven
themselves in addressing real-world issues [42]–[45]. Since it has loops that allow information from
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the previous time slice to be transmitted to the following time slice, the RNN has an excellent
ability to learn especially for time series Data. The RNN, on the other hand, has an issue with the
gradient disappearing and exploding, and this defect causes the RNN’s ability to learn long-distance
information to decrease over time. [46]. To compensate for this problem, the LSTM network, which
is able to learn long-term dependencies in data series was established for long-sequence data learning
and solves the problem of vanishing gradients [47]. LSTM approaches have lately become popular
amongst researchers in the hydrology and water management field. The robustness of various neural
network topologies for simulating and predicting water levels of the combined structure was explored
by [48], they found that LSTM (together with a cell memory recurrent neural network design) is
preferable for multi-step-ahead predictions when compared with conventional architectures that
lack explicit cell memory. LSTM was used by [49] to predict water tables in agricultural areas.
Research analyzed the effectiveness of AI models such as LSTM for flow prediction of the river basin
in India when compared to the conventional and naive method [50]. To predict the discharge at
the Hoa Binn Station in Vietnam a deep LSTM model was used [41]. In their study, in addition
to evaluating the model’s ability to predict flood flows and flood peaks, they look into the impact
of dataset features on model performance. Although there are many studies, to our knowledge no
prior studies have examined the use of long-short term methods for forecasting EPm. In the current
study Gaussian Processes (GPs) are used to construct the model and the LSTM approach is applied to
forecast monthly EPm data for two sites in the United States of America, one is Hialeah in Florida
state with a tropical climate, and the other one Markley cove in California with a Mediterranean
climate.

Based on the reported literature, there was a substantial amount of research was adopted on the
utilization of the LSTM model in solving hydrological processes [50]–[52]. Hence, the inspiration of
the current research was initiated. LSTM model was developed to forecast the EPm process at two
different climate characteristics in the USA. The feasibility of the LSTM was compared with the
GPR model. As a matter of fact, the identification of the appropriate correlated lag time series is one
of the popular obstacles in hydrology [53]. Hence, in the current research, a dynamic LSTM model
was developed to identify the proper and essential lag time for the development one month ahead
EPm process. As a matter of fact, the identification of the appropriate correlated lag time series is
one of the popular obstacles in hydrology. Hence, in the current research, a dynamic LSTM model
was developed to identify the proper and essential lag time for the development one month ahead
EPm. The dynamic RNN (LSTM) takes advantage of the vanishing gradient issue to increase speed
in a way that conventional LSTM does not [54]. Variable sequence length is possible with dynamic
LSTM unlike static LSTM, which anticipates running for the entire length of the LSTM, dynamic
LSTM expects to run for the entire length of the LSTM. The modeling process is conducted using
a univariate modeling procedure where only historical data of evaporation are used to build the
forecasting model. This is giving the potential to use minimal information for the modeling process.
This gives credit to the catchments where there is a serious limitation in the data measurement.

1.4 Research objectives
The research objectives of the current research are: i. Develop a relatively new machine learning
model called the LSTM model for EPm forecasting.

ii. Validate the proposed model with the GPR model and assess both models statistically and
graphically.

iii. Investigate the capacity of the proposed model for two different climate characteristics at the
USA.

iv. Perform univariate modeling procedure where only memorial historical EPm data are used
for the modeling development.

v. The input features for the forecasting matrix “lag times” are identified using the feasibility of
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the LSTM model.

2. Materials and Methods
The schematic of the Dynamic LSTM is shown in Figure 1. The data set obtained has been processed
as per the given flow chart diagram.

Figure 1: The schematic framework of the proposed methodology.

2.1 LSTM
Deep learning (DL) is well known among ML algorithms as it confers the ability to think and see
like humans. DL is a group of frameworks whose main objective is to represent abstract ideas in data
sets. A deep graph made up of a range of transformations (linear & nonlinear) and several processing
layers are used to implement deep learning models. Long-term dependencies can be recognized
using the LSTM, a particular kind of RNN [47]. This model has the ability to generate errors
without declining gradients by introducing the cell modes with static errors. In contrast to other
RNNs, the LSTM comprises four distinct layers that co-interact by a predetermined topology. The
parameter and computational costs of the LSTM are 4x those of the RNN. LSTM has a network for
the computation of the memory input. The input or update gate is responsible for determining the
relevance of the received data from the current moment for storage in long-term memory, while the
job of the output gate is to just forward the needed data to the output; the role of the forget gate is
determining the level of available long in the memory cells, and or wiping out (forget) unnecessary
previous information [55], [56]. The memory of present and prior data is stored and passed through
the hidden layer activation; this allows subsequent activations to have the patterns and sequences of
the earlier data [57].

In ML algorithms, the data set is mostly divided into training and testing sets. The parameters
that must be determined in these ML algorithms include the number of hidden layers, the batch
size, the maximum epoch, the learning rate, and the number of neurons. These parameters could be
chosen algorithmically or at random. The selection and calculation of these functions in the gate are
based on the maximum epoch and expected error level [55], [56], [58], [59].

Figure 2 depicts the LSTM design, where X represents the time series of C-channels and S-length;
Ct is the state of the cell at time-step t, while ht represents the hidden/output state [60]. The first
LSTM is utilized for the series’ first step and the network’s early state to calculate the first input &
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output states. The input cell state and output (ct) in this block is calculated at time t using the current
network state (ct-1, ht-1) and the following time step in the sequence.

Figure 2: LSTM layer architecture [60].

The cell state and the hidden (output) state make up the state of the layer. The layer is in charge
of changing the information in the cell state at every given time step. These upgrades are managed
by the gates. Several LSTM architecture components are used to regulate hidden and cell state.
Input or update gate (i) controls the cell state update level, while the level of cell state added to the
output state (o) is controlled by the output gate (i). Cell candidate (g) exasperates the cell state with
informational knowledge, while the forget gate checks the cell state level reset (f ).

Figure 3 displays the data as it was at time-step t. This figure graphically illustrates the processes
involved in the output, update, and forget of the hidden and cell states by the gates. For an LSTM
layer, the learnable weights include recurrent weights R, input weights W, and bias b. R and W
matrices are insertions of recurrent weights and input weights, respectively. b matric is the bias of
any part.

Figure 3: The procedure of the data flow at time step t [58].

These three matrices can be represented as follows:
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W =


Wi
Wf
Wg
Wo



R =


Ri
Rf
Rg
Ro



b =


bi
bf
bg
bo



(1)

where o = output gate, g = cell candidate, f = forget gate, and I = input gate. The cell state (Ct)
and hidden state (ht) at time step t can be represented thus:

Ct = ft ⊙ Ct–1 + it ⊙ gt (2)

ht = ot ⊙ σc (Ct) (3)

where represents the multiplication of the element-wise vector (Hadamard product), and c
depicts the state activation function. The hyperbolic tangent function is employed by default in
the model to represent the state activation function. The LSTM components at time step t can be
represented as [58]:

it = σg (Wixt + Riht–1 + bi) (4)

fg = σg
(

Wf xt + Rf ht–1 + bf

)
(5)

gt = cH
(
Wgxt + Rght–1 + bg

)
(6)

ot = σg (Woxt + Roht–1 + bo) (7)

where g is the gate activation function. For the determination of the gate activation function in
LSTM, the sigmoid function is used as follows:

σ(x) = (1 + e–x)–1 (8)

2.2 Gaussian Process Regression (GPR)
Gaussian Process Regression (GPR), which employs the idea of a comprehensive Bayesian learning
process, is used to tackle supervised regression & classification problems [61]. The GPR model
has several advantages over other ML methods, including ease of use, hyperparameter prediction,
effectiveness on small data, self-adaptive to enhance parameter prediction, and recognition for
potential values rather than absolute values for each parameter defined inside the function in the
probability distribution. The output value of y can be represented as:

y = f (X(k)) + ε (9)
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where X is the input variable measurement, is the noise with a Gaussian distribution, and f stands
for the function that needs to be modeled. A Gaussian process with a mean of m(x) and a covariance
function of cov(x,x’) determines the earlier probability of the space of functions [62].

f (x) ∼ GP
(
m(x), cov

(
x, x′

))
(10)

For a specific example of predictor variables x∗, the mean and variance p(y|X, y, x) of the prediction
probability distribution can be represented as:

ŷ∗ = m (x∗) + kT
∗
(

K + σ2
nI
)–1

(y – m (x∗)) (11)

σ2
y∗ = k∗ + σ2

n – kT
∗
(

K + σ2
nI
)–1

k∗ (12)

where K represents a covariance matrix with elements [K]i,j = cov
(
xi, xj

)
,k∗ is a vector that can

be introduced by [k∗]i = cov (xi, x∗) ,k∗=cov (xi, x∗) ,andIrepresenttheidentitymatrix.
GPR, unlike conventional regression techniques, uses the training datasets X, y to decide the

model’s output. The selection of the hyperparameter values is based on the maximization of the
log-likelihood function of the training dataset [63]:

log p(y | X) = –
1
2

yT
(

K + σ2
nI
)–1

y –
1
2

log
(

| K + σ2
nI
)

| –
n
2

log(2π) (13)

2.3 Study area and used data
The monthly EPm data from two meteorological stations in the United States of America are used.
The location of these two stations and the geographical coordinates are shown in Figure 4. One
station has a tropical climate in Hialeah, Florida (station 51), and the other has a Mediterranean
climate in Markley Cove, California (station 9). The range of the used data is thirty years ranging
from 1980-2020.

Figure 4: The location of meteorological stations used in this study.
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2.4 Performance metrics
Different metrics were used to evaluate the efficiency and effectiveness of the model [35]. In equations
(14-16), the p(i), o(i) and p are forecasted, observed and mean forecasted values, respectively. The
applied forecasting models were evaluated statistically using the mean absolute error, root mean
square error and determination coefficient [64]. The mathematical expression is presented as follows:

MAE =
1
N

N∑
i=1

|(p(i) – o(i))| (14)

RMSE =

√√√√ 1
N

N∑
i=1

|(p(i) – o(i))| (15)

R2 = 1 –
∑i=N

i=1 (p(i) – o(i))2∑i=N
i=1 (p(i) – p̄)2

(16)

Various metrics are used to evaluate the proposed and comparable forecasting models. The
minimal value of RMSE is an indication of high prediction accuracy. Whereas, the higher value
of correlation exhibited the better model’s results. Besides the statistical metrics presented in the
equations. 14-16, the Taylor diagram [65] is also utilized to evaluate models’ accuracy. Taylor
diagram was utilized to visualize models forecasting performance using three metrics including
RMSE, correlation and standard deviation [35].

3. Application results and analysis
The main goal of the current research establishment is the motivation of using an advanced computer
aid model called based on deep learning to investigate the forecastability performance against the
GPR model. This research was conducted based on numerical statistic evaluation and the capacity
of the models to simulate the EPm in two different chitchatted climate coordinates. The statistical
properties of the investigated dataset were reported in Table 1 and based on the presentation of the
numeric, both stations comprise total records of 492 monthly scale data. In comparison with the
adopted literature review, this data span is sufficient to construct such an ML model and it is adequate
to mimic the actual trend of the EPm dataset. The maximum and minimum records of EPm at
MARKLEY COVE (station 9) and HIALEAH (station 51) are (10.119 & 0.237) and (11.979 & 3.408),
respectively. Apparently, the stochasticity of the dataset at the MARKLEY COVE station is more
complex as the variation between the maximum and minimum records is very high.

Table 1: Monthly EPm (mm) statistics characteristics of the study stations, USA.

Stations Dataset No.records Mean Maximum Minimum Variance Skewness

No. 9 Training 400 3.875 10.119 0.237 6.952 0.348
USC00045360 Testing 92 3.786 7.824 0.327 5.473 0.105

MARKLEY COVE, CA, USA All data 492 3.843 10.119 0.237 6.68 0.331
No.51 Training 400 6.11 11.979 3.408 1.919 0.34

USC00083909 Testing 92 6.05 8.881 3.744 1.661 -0.001
HIALEAH, FL, USA All data 492 6.113 11.979 3.408 1.865 0.279

Based on the sliding window initiated for identifying the appropriate lags for both stations 9 and
51, the efficient lag time for the EPm forecasting was four months lead time for station 9 and station
51, the efficient lag time for the EPm forecasting was seven months lead times.
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3.1 Station 9 modeling accuracy
Figure 5 was presented the time series of station 9 over the period (1980-2020), it can be observed
that the dataset within the recent years trended to decrease the EPm with a range of limitation (1-8
mm), whereas in the 1980s the EPm was ranged between (1-10 mm). This could be due to climate
change or some other human interactions such as deforestation. It is also clearly can be understood
from the heat map of the time series data that the highest rate of EPm was experienced between
May-September. For the modeling development of the forecasting matrix, the LSTM model used
an auto generated technique for identifying the essential features “highly correlated lags” based on
the minimal error. The efficient lag time for the EPm forecasting was four months lead time.

Figure 5: Station 9: The time series dataset used for the modeling development over the training and validation.

Figure 6: Station 9: a) LSTM modeling process (Training and Testing), b) Relative error metric for the
LSTM model, c) Forecasting performance for the LSTM.
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Graphically, Figure 6 reveals the forecast modeling accuracy of the developed LSTM model
and the GPR “benchmark model” for station 9. For a better understanding of the LSTM model
running process, different types of graphical evaluations were generated including density, villion,
boxplot, scatter plot and Taylor diagram for both the training and testing phases. The density graph
displays that the LSTM model attained a closer match with the actual observations of EPm. The
villion and boxplot present almost alike visualization for the range of the error values. In general,
the graphics indicated an acceptable forecasting capability of the LSTM model with determination
coefficient magnitude (R = 0.95), mean absolute percentage error (MAPE= 19.3%) and mean absolute
error (MAE = 0.446). Time series actual and forecasted values were mostly identical with marginal
error and a single observation of overforecasted at the highest rate of EPm. Scatterplot shows an
acceptable match between the actual and predicted values except some observations are diverted
from the identical 45o line. This best can be explained due to the shortcoming of the effective lag
times needed for the modeling simulation, or some dramatic changes in the climate of this particular
month need extra climatic information to comprehend the actual mechanism of the EPm. The root
mean square of the LSTM model is lower for station-9 and so, the LSTM model has better fitting
as depicted in the Taylor diagram (Figure 6). Moreover, the LSTM model has a significantly high
Pearson correlation coefficient greater than 0.95. Hence, the LSTM model is strongly correlated to
the measured data. On the other hand, the GPR model still has a high Pearson correlation coefficient
that exceeds 0.9.

Figure 7: Station 9: a) Relative error metric for the GPR model, b) Forecasting performance for the GPR, c)
Taylor diagram presentation.
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Additionally, the GPR model has a slightly lower normalized standard deviation which indicates
a closer distribution of the predicted points by the GPR model around the mean compared to those
for the LSTM model.

The modeling evaluation of the benchmark model (GPR) at Station 9 was presented in Figures 7
in parallel with the LSTM. The results are in general compared with the proposed LSTM model.
This can be revealed the limitation of the GPR model to professionally mimic the EPm stochasticity.
The scatter plot indicates a lower determination coefficient magnitude (R2 = 0.85 for the training
phase and 0.83 for the testing phase), with much higher value of MAPE = 45.3% and MAE = 0.729
over the training phase and MAPE = 45.8% and MAE = 0.78for the testing phase. Based on the
coordination map of the Taylor diagram, the LSTM model has reported closer coordination to the
observed EPm data in comparison with the GPR model.

Table 2: Performance indicators for Station (9)

Algorithm Training Phase

R2 KGE MAPE MAE RMSD NSE
LSTM 0.95 0.954 19.30% 0.446 0.587 0.95
GPR 0.854 0.848 45.30% 0.729 1.019 0.85
Algorithm Testing Phase

R2 KGE MAPE MAE RMSD NSE
LSTM 0.923 0.958 20.90% 0.493 0.657 0.92
GPR 0.834 0.902 45.80% 0.78 0.954 0.832

3.2 Station 51 modeling accuracy
The time series dataset of station 51 was presented in Figure 8 for the period (1980-2020). In
comparison with station 9 and station 51, the dataset was reported a totally different pattern in
which the data ranges between (4-8 mm); however, several jumps in the EPm exceed 10 mm. The
jumps’ values are distributed all along the studied period and did not follow particular seasonality or
distinguished periodical phenomena. For station 51, the efficient lag time for the EPm forecasting was
seven months lead times. However, eight- and nine months lead times reveal almost similar potential.
Nevertheless, the modeling of station 51 was adopted based on seven leg times as forecasting matrix
predictors.

Figure 8: The time series dataset used for the modeling development over the training and validation.

The forecasting modeling accuracy of the developed LSTM model and the GPR “benchmark
model” at station 51, was stated in Figure 9. For this station, both the training and testing phases’
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results are considered for the evaluation of the results. The graphical presentation was demonstrated
the relative error percentage of the LSTM model over the testing phase relatively enhanced in
comparison with the GPR model (Table 2). The graphics indicated that R2 = 0.58 and 0.50 for
LSTM and GPR models, respectively over the training phase. The results can be observed much
worse than those in station 9. This is clearly can be explained due to the nature of the evaporation at
this station, which is associated with much complexity and non-stationarity. The time series of the
actual and forecasted values were not in harmony perfectly and an obvious mismatching at certain
observations where the associated sudden records of the EPm were incorporated. The GPR model at
station 51 attains substantial forecasting accuracy. However, this is just one single evaluation metric
and hence other evaluation metrics should be tested on the modeling performance. The scatter plot
indicates a much lower correlation magnitude. Time series actual and forecasted values were implied
as almost totally mismatching. Based on the multiple metrics graphical presentation (correlation,
RMSE and standard deviation) in the form of a Taylor diagram, the LSTM model was described
as closer coordination based on the three metrics to the observed EPm data in comparison with
the GPR model. The root mean square of the LSTM model is slightly lower for station-51 and so,
the LSTM and GPR models have similar fitting characteristics as depicted in the Taylor diagram
(Figure 10). Moreover, the LSTM model has a higher Pearson correlation coefficient greater than
0.75, whereas it is 0.7 to 0.75 for the GPR model. Hence, the LSTM model is better correlated to
the measured data compared to the GPR (Table 3). In contrast, the GPR model has a significantly
lower normalized standard deviation below 0.75 which indicates a closer distribution of the predicted
points by the GPR model around the mean compared to those for the LSTM model.

Figure 9: Station 51: a) LSTM modeling process (Training and Testing, b) Relative error metric for the
LSTM model, c) Forecasting performance for the LSTM

These models can be used in planning the water budget of river basins and reservoirs where
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other models fail due to the linear nature and ineffectiveness of reducing errors between the actual
and forecasted value. These accurate ML techniques can be used to plan and implement effective
irrigation policies. The primary limitation of this research is that the forecasting accuracy is very
much affected by the predictors, the research did not consider a different combination of input
parameters for models.

Figure 10: Station 51: a) Relative error metric for the GPR model, b) Forecasting performance for the GPR,
c) Taylor diagram presentation.

4. Validation with the literature
Various ML models such as MLP, ANN, Adaptive Neuro-Fuzzy Interference Systems (ANFIS),
Graph Neural Network (GNN), SVM, ELM and many more have been used in forecasting of EPm.
One such study was done that compared Functional Link Artificial Neural Network (FLANN)
with Multi-Layer Artificial Neural Network (MLANN) which used the aforementioned models at
India in Chattisgarh State [66]. The FLANN attained minimum RMSE and MAE of 0.85-1.27 and
0.63-0.95 respectively when compared to MLANN with RMSE of 0.94-1.58 and MAE of 0.73-1.14.
However, a daily EPm forecast was also carried out in a Deep LSTM where its comparison was made
with empirical models with an average R2 of 0.79 for three climatic regions in Chattisgarh, India
[67]. Furthermore, a hybrid model of Slap Swarm Algorithm (SSA) and Kernel-Based Non Linear
Arps Decline (KNEA) outperformed the M5 model tree (M5) and Multivariate Adaptive Regression
Splines (MARS) in research conducted in north China [68]. The RMSE and MAE of the hybrid
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Table 3: Performance indicators for Station (51)

Algorithm Training Phase

R2 KGE MAPE MAE RMSD NSE
LSTM 0.581 0.651 11.40% 0.676 0.902 0.58
GPR 0.511 0.56 11.40% 0.691 0.995 0.489
Algorithm Testing Phase

R2 KGE MAPE MAE RMSD NSE
LSTM 0.485 0.614 12.40% 0.714 0.924 0.48
GPR 0.372 0.447 14.20% 0.81 1.02 0.367

model were 1.067 and 0.867. Three ML models such as M5, Random Forests (RF) and Gradient
Boosting Decision Tree (GBDT) were compared for EPm prediction in local and cross-station data
in China with various empirical models [69]. With an RMSE of 0.86 and R2= 0.73, the GBDT
excelled over all other models. Even though, it is seen that hybrid models such as those mentioned
above give an effective prediction of EPm since the input variables are much less when compared to
stand alone models. This is shown in research where Support Vector Regression (SVR) a standalone
model is compared with SVR combined with Krill Herd Algorithm (SVR-KHA) for which R2 were
0.71 and 0.66 respectively [70]. Similarly, three ML models Extreme Gradient Boosting (EGB),
Elastic Net Linear Regression and LSTM were used to forecast the monthly EPm rate in Malaysia in
which LSTM showed the most precise prediction of EPm with R2 of 0.97 and 0.98 for Alor Setar
and Kota Bharu respectively [71].

5. Conclusion and possible future research
The objective of this research was to investigate the feasibility of an over popular version Deep-
learning method called (i.e., LSTM model) to forecast monthly EPm and compare its validity to
the GPR model. The data set is based on two main stations in the United States with varying
climates and coordinates. Station 9 in Markley Cove, California, has a Mediterranean climate, while
Station 51 in Hialeah, Florida, has a tropical climate. The LSTM model used for modeling EPm
data is evaluated using statistical metrics and graphical presentation. The results of the simulated
data with both the LSTM and GPR methods show that the LSTM method outperforms the GPR
method in simulating EPm data. Checking the evaluating indicators such as RMSE and R2 in both
stations 9 and 51 demonstrates this. The results indicate the limitations of the GPR method in
simulating the stochasticity of EPm. In addition, based on the Taylor diagram’s coordination map,
the LSTM model reported closer coordination to the observed EPm data than the GPR model. For
possible future research, only data from one study area was used in this study, and further work is
recommended with additional data from two or more stations to support these conclusions. Since AI
models perform differently depending on the properties of the simulated matrix in different situations
so the selection of input variable is one of the important factors, further study can be done using
different combinations of climatological variables as inputs. These variables can be configured using
various techniques such as Gamma Test.
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