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Abstract
To address the difficulties of evaluating the mechanical properties of energy-intensive mild steel mate-
rials during large plastic deformation in seismic engineering, a method for predicting their mechanical
characteristics based on intelligent integration technology is provided. The collected experimental data
is predicted and analyzed by intelligent technology; the experiment is designed as a two-layer model,
with the first layer model employing the random forest (RF) algorithm based on Randomized Bayesian
Optimization and the natural gradient boost (NGBoost) algorithm serving as the basic learner. The second
layer calculates fusion integration using the findings of the first layer’s analysis and single-layer logistic
regression. The new fusion integration model reflects the experimental test set more accurately. The link
between the stress and strain change trend, change rate, and change value The results indicate that the
intelligent integration technology has a fitting impact that is 31.2% and 29.7% more than the single RF
algorithm and the NGBoost algorithm prediction technologies, respectively. The proposed method is
appropriate for assessing massive plastic deformations of mild steel materials under various vertical step
angles. The reference value of changes in mechanical properties over time is significant.
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1. Introduction
As a significant energy-consuming component, dampers made of metal have been widely employed
in seismic engineering. Utilizing the plastic deformation capability of metal materials to the fullest
extent while optimizing the metal damper can increase its energy dissipation capacity. Different types
of dampers utilize various techniques for dissipating metal energy [1], typically shear [2], tension [3],
bending, and their combinations [4]. Vertical step design is required for structural optimization and
coupling of metal dampers.

The rungs exhibit different properties due to different stresses such as tension [5-6], bending
[7], and shear [8-9]. Also affecting performance are form characteristics, such as corner shape [12].
There is little research on the stress concentration of the step and its influence on the deformation
performance of the damper during plastic deformation. The rationality of the step design will affect
the performance of the damper. Using artificial intelligence technologies, scientists can predict and
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analyze the stress-strain conditions of different vertical steps. This can improve the scientific rigor
and reliability of the system evaluation and have useful real-world effects.

The study of the mechanical characteristics of metals is one of the hottest topics in the field of
mechanical design research. Various methods, such as the finite element model [13], modal structure
[14], and so on, can be utilized to analyze the mechanical properties of metal materials. With the
spread of artificial intelligence technology, it has become important to use AI to study the mechanical
properties of metals.

Support vector machines (support vector machines, SVMs) [15], as well as other technologies,
are utilized in this field’s research. Using a single intelligent technology for research may have some
drawbacks, but integrating the fundamental intelligent algorithms and utilizing their individual
benefits for integrated research can effectively improve the analytical ability and precision. With
the help of basic learning algorithms and integrated fusion technology, this research looks into the
mechanical properties of metals. By employing machine learning, the authors of [21] were able
to build accurate and practical prediction models of the performance of tubular solar stills, which
were represented in terms of hourly output. The models were built and evaluated on the basis of the
experimental data. These models included the standard multilinear regression, random forest with
and without Bayesian optimization, and classical artificial neural networks with and without Bayesian
optimization. An efficient framework for the identification of anomalies is presented in the article
[22], which makes use of the Bayesian Optimization method to modify the parameters of the Support
Vector Machine with Gaussian Kernel (SVM-RBF), Random Forest (RF), and k-Nearest Neighbor
(k-NN) algorithms. The ISCX 2012 dataset is used to conduct an analysis of the performance of the
algorithms that are under consideration. It was shown in paper [23] that using a hybrid model that
combined Bayesian optimization (BO) with extreme gradient boosting (XGBoost) might increase
the accuracy of prediction models. This was accomplished by modeling the TBM AR.

At the moment, the majority of data-driven methods concentrate on developing a relation model
for a particular property of the materials, even if this may cause them to neglect the restrictive
limitations of other qualities. In the paper [24], the authors present a technique that is based on
machine learning and use nonlinear programming to determine different attributes of the materials.
They then use the Interior Point Algorithm to solve the issue. The essential concept is to use
the mapping functions that correspond to the qualities of the materials as the constraints of the
nonlinear programming problem; as a result, it is possible to process the limits that are imposed
by these attributes. Recent years have seen the gradual use of machine learning (ML) methods in
an effort to hasten the development of high-performance MOFs. Henry’s coefficient, along with
other characteristic parameters, was estimated in [25] and added to the previously published data
set of hypothetical metal–organic frameworks (hMOFs) for methane storage. This was done in
addition to earlier research. It is one of the most essential elements in structural design, and hence
[26] presents a soft-computing technique to forecast the ultimate shear capacities (USCs) of concrete
beams reinforced with steel fiber. Both the NN-RCGA and the NN-FFA are examples of hybrid
machine learning (ML) algorithms that were developed by combining neural networks (NNs) with
two distinct optimization techniques (i.e., the Real-Coded Genetic Algorithm (RCGA) and the Firefly
Algorithm (FFA)). These techniques are known respectively as the Real-Coded Genetic Algorithm
(RCGA) and the Firefly Algorithm (FFA). In order to facilitate the building of the models, a database
including 463 sets of experimental data was compiled from reputable sources of information.

The natural gradient boosting (NGBoost) [17] algorithm in artificial intelligence technology is
based on the natural gradient boosting method, which directly obtains the full probability distribution
in the output space of the prediction result, which is used for probabilistic prediction uncertainty
quantification. This is a characteristic not shared by other gradient boosting approaches. So, the
NGBoost algorithm is better at predicting the mechanical properties of materials made of mild steel
that have random structural features.
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The application of the random forest (RF) algorithm [18] is quite stable. Even if a new data
point is added to the dataset, the algorithm will not be significantly altered. For instance, a single
decision tree will be impacted without impacting every decision tree. This algorithm also has a high
resistance to overfitting and can make it easier to analyze the performance of mild steel materials
more accurately.

This paper begins with a methodical investigation of the properties of mild steel, and it then moves
on to adopt the fusion and integration method of the NGBoost algorithm and the RF algorithm
[19–20] in order to improve the quantitative uncertainty and reliability of the algorithm, as well as
to evaluate and predict the mechanical properties of mild steel materials with a level of accuracy that
is considered to be reasonable. performance.

2. Research Framework
2.1 Overall framework
In order to study and analyze the stress-strain situation of mild steel structures under different plastic
deformations, three different steps were set up for research. The specific research plan is shown in
Table 1

Table 1: The designed research schedule adopted in this research.

Sample Mild Steel Material Angle / (o) Load Research Method
Prediction Method Prediction Method Integration Method

1 T30 30 Stretch Ngboost Rf Stack
2 T45 45 Stretch Ngboost Rf Stack
3 T60 60 Stretch Ngboost Rf Stack

In order to more accurately reflect the stress-strain changes of mild steel materials, this paper
adopts the intelligent fusion method to improve the effect of learning analysis and further reduce the
deviation. The overall research idea framework is shown in Figure 1.

Figure 1: Overall the conducted research framework.

Firstly, two basic algorithms are used to analyze the experimental results of mild steel T30;
secondly, the two basic algorithms are integrated, calculated and analyzed through intelligent fusion
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technology; Finally, using the experimental results of T45 and T60, the rationality, accuracy and
reliability of the optimized fusion model are verified by residual analysis.

2.2 Mild steel samples
The damage of the steps of mild steel dampers during plastic deformation is complex, and the research
on the damage characteristics of the steps under the load of reciprocating cycles is still insufficient.
In actual working conditions, the angle of the T-shaped step is no longer a fixed value, but varies
with the shear amplitude. Therefore, three angles (α are 30o, 45o, and 60o respectively) are designed
in the shape step, and the mechanical properties of mild steel samples are studied with intelligent
technology (Figure 2). Stress-strain changes.

Figure 2: Mild steel sample.

3. Algorithm Design
3.1 NGBoost algorithm
NGBoost [27] is an ensemble learning method that can realize probabilistic prediction. It mainly
includes three parts : weak learner , probability distribution and scoring criteria. NGBoost predicts
the parameters of the conditional probability distribution of the model in the form of a function to
achieve the purpose of probability prediction. By directly predicting the parameter µ, a probability
prediction with a probability density pµ is generated , which provides a basis for the evaluation of
credibility.

Before explaining the principles of NGBoost, here we first outline the appropriate scoring rules
and their corresponding induced divergences. A suitable scoring rule S takes as input a probability
distribution G and an outcome value z such that the outcome has the best possible score expected
from the true distribution. If the scoring rules are appropriate, then:

Ez–g = (S(g, z)) ≤ Ez–g(S(G, z))∀G, g (1)

In the formula: Ez–g is the expectation function indicating that the result z obeys the probability
distribution of g; g is the true distribution of the result z.

The most commonly used scoring rule is the logarithmic score L , also known as maximum
likelihood estimation (MLE):

L(µ, z) = – ln Gµ(z) (2)

where Gµ is the probability density function of the parameter µ. Kullback-Leibler divergence DL
can be derived from the MLE scoring rule as:

DL(g|G) = E∼g(S(G, z)) – E∼G(S(g, z)) = Ez–g

(
ln

g(z)
G(z)

)
(3)
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NGBoost are as follows.

Step 1. Input dataset U = {(fiyi)}, i = 1, 2, . . . , m. Set the NGBoost parameters such as the number of
iterations k , the learning rate η, and the maximum number of iterations K.

Step 2. By minimizing the sum of the response variables of the evaluation rule S in all iterative samples,
estimate a common parameter µ(0) as shown in Eq. (4).

µ(0) = arg min
µ

S(µ, yi) (4)

Step 3. Update the scale coefficient and prediction parameters, record the number of training k =
1, 2, . . . , K, in each training process, perform the following calculations.

1) For each training sample i , find the prediction parameters of the algorithm for the sample up
to the k -th iteration; The natural gradient li of the evaluation rule MLE for µi:

l(k)
i ∞IL(µ(k∗1)

i )–1▽µL(µ(k∗1)
i , yi) (5)

In the formula: ▽L(µ(k∗1)
i , yi) is the gradient of the scoring rule MLE on a parameterized

probability distribution Gµ with respect to parameters; IL(µ(k∗1)
i ) is the predicted value of

Gµ. The amount of Fisher information brought, its definition is shown in formula (6)

IL(µ(k∗1)
i ) = Eyi–Gµ

(▽µL(µ(k∗1)
i , yi)(▽µL(µ(k∗1)

i , yi)⊤) (6)

2) Fit ( ) with a set of weak learners to predict the corresponding component w(k) of the natural
gradient li for each sample i. The fitted weak learner output is the projection of the natural
gradient on the range of the weak learner class, as shown in Eq. (7), the projected gradient is
scaled by a scaling factor ρ.

w(A) = fit((fi, l(A)
i |i = 1, 2, . . . , m)) (7)

ρ(k) in the k -th iteration according to Eq. (8).

ρ(k) = arg min
p

m∑
i=1

S(µ(k–1)
i + ρw(k)(fi)yi) (8)

Step 4. Based on the proportional coefficient ρ(k) and the learning rate η, update the prediction parameters
according to formula (9).

µ
(k)
i = µ

(k–1)
i ηρ(k)w(k)(fi) (9)

Step 5. Save the scale factor and weak learner {ρ(k)w(k)|k = 1, 2, . . . , K in K iterations of training.

3.2 Random forest and optimization algorithm model construction
3.2.1 Random forest RF model
The random forest algorithm generates multiple decision trees by random sampling, and integrates
each decision tree to obtain the final result, which can well solve the problem of overfitting of a single
decision tree [16]. Compared with artificial neural network, random forest is simple and efficient,
and has outstanding advantages in parameter optimization and variable analysis [17]. The steps to
build a random forest based on the bagging framework are as follows.
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Step 1. There is random sampling with replacement, and N training sets are selected as the root node
samples of each regression tree.

Step 2. step tree step ) with the sub-training set.
Step 3. N decision trees get N results. Take the average of N results as the final result of random forest.

The model test result is
E
(∑

Xi
N

)
= E(Xi) (10)

In the formula: Xi is the variable of the sub-data set that can be randomly replaced and sampled,
i = 1, 2, . . . , N. The selected reflectance band combination is used as input ata, and the measured
DOC mass concentration is used as output data, in which 80% of the data is used as training data
and 20% is used as validation data. The scikit-learn open source machine learning library in py
-thon builds models using the random forest algorithm. In the random forest regressor, the RF
frame features are n_estimators , oob_score, criterion. RF decision tree parameters have max_features
max_depth min_ _samples_split, min_samples_leaf, random_state.

3.2.2 Randomized Bayesian Optimization
Forest BO-RF model in random forest model, n_estimators min_samples, _split, max_features,
max_depth all use default values. In order to improve the accuracy of the model, a Bayesian
optimization algorithm is introduced to optimize the random forest, and the optimization process
adopts the Bayesian theorem:

P(f |Dt) =
P(Dt |f )P(f )

P(Dt)
(11)

In the formula: f represents the parameters in the parametric model; Dt = {(a1, b1), (a2, b2), . . . , (at, bt)}
represents the observed set, at represents the decision vector, bt = f (at) + t epresents the observed value,
t represents the observation error; P(Dt |f ) represents the likelihood distribution of y; P(f ) represents
the prior probability distribution of f; P(Dt) represents the marginal likelihood distribution of f;
P(f |Dt) represents the posterior probability distribution of f, and the posterior probability distribution
describes the confidence of the unknown objective function after the prior is corrected through the
observed data set. The two core processes of Bayesian optimization are the prior function (prior
function, PF) and the acquisition function (acquisition function) . Based on the Gaussian process,
this paper initializes the prior distribution of the substitution function. Several data points, and then
use the sampled value to get the new value of the objective function. Then according to the new
data, update the prior distribution of the substitution function, and start repeating the iteration. After
the iteration, find the global optimal solution according to the current Gaussian process. The main
steps of Bayesian optimization are shown in Figure 3. Import the Bayesian optimization algorithm
in python, and use Bayesian optimization to adjust n_estimators, min_samples_split, max_features ,
max_depth , etc. on the performance and speed of the random forest model Hyperparameters that
have a greater impact. The specific process is as follows: define the objective function, the input
of the function is several parameters for tuning, and the output is the R2 mean value of 5 times of
model cross-validation; set the hyperparameter search space pounds are shown in Table2 to build a
Bayesian optimizer, set n_iter = 25, init_points = 5. The optimal parameters are obtained through
experiments: max_features = 0.817, min_samples_split = 2, max_depth = 8, n_estimators = 669, and
the model is constructed using the optimal parameters.

4. Results and Discussion
4.1 Experimental results
The plastic deformation of the specimens with different T-shaped step angles under tensile load
is different. Plastic deformation is mainly concentrated in the middle region. Under the action of
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Figure 3: Hyperparameter search space.

Table 2: The set of the hyperparameter search space pounds adopted in the developed methodology.

Hyperparametric Search space settings

min_samples_split 2 ∼ 20

n_estimators 2 ∼ 20

max_features 0.100 ∼ 0.999

max_depth 2 ∼ 15

tensile load, as long as the step height is sufficient, different step angles have better strengthening
effect (Figure 4).

Figure 4: Tensile experimental results.

4.2 Prediction algorithm
In the first step of the process, T30 will be subjected to a tensile test. The proportions of the test set
are defined as 90%, 80%, 70%, and 60%, and the prediction impacts of model fusion under each of
these distinct proportions are explored separately. The first layer model of the experiment employs
a mix of the RF algorithm and the NGBoost algorithm; the second layer model uses the analysis
findings of the first layer, which are then further combined using single-layer logistic regression.
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Figure 5: Stack computing procedures.

The experiment has two layers in total. Figure 5 depicts the calculating procedure for the fusion
process.

The learner of the RF algorithm is used to construct a fusion calculation model, and the mean
square error (MSE) index is compared and assessed here. The findings are shown in Table 3 below.
When compared to the basic learner, the fusion integrated model has the ability to enhance prediction
accuracy while simultaneously lowering the amount of error that is introduced into the forecast.

Table 3: The values of the MSE index analysis of the developed model.

K Fold NGBoost RF Starck

1 0.4925 0.0230 0.0215
2 0.6430 0.1624 0.1623
3 0.4854 0.0204 0.0193
4 0.3933 0.0197 0.0194
5 0.4455 0.0187 0.0181
6 0.6474 0.0234 0.0233
7 0.5784 0.0203 0.0189
8 0.4277 0.0226 0.0221
9 0.5128 0.0192 0.0184
10 0.5231 0.0186 0.0182
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Figure 6: Stress-strain curves.

4.3 Effectiveness analysis
The residuals are used in further research and analysis so that the efficacy of the fusion model can be
examined and evaluated. First, do your analysis using R2. Table 4 presents the results of the R2 test.
As can be seen, the coefficient of determination (R2) is the number that determines how well the
estimated model fits the observed data. The model is improved if the value is closer to 1 than if it is
not. The revised R2 value comes in at 0.806. It demonstrates that the model is a good match. When
it comes to making an estimate of the standard errors, having fewer errors indicates that the model is
doing better. The fusion model has a value of 22.542, while the RF algorithm model has a value of
26.795 and the NGboost algorithm model has a value of 26.463; thus, the fusion model is 15.9% and
14.8% higher than the NG-Boost algorithm model.

Table 4: The results of the R-square test.

Model R R2 After adjustment R2 Estimated standard error Durbin Watson

Fusion model 0.898 0.896 0.896 22.542 0
RF algorithm model 0.898 0.896 0.896 26.795 0
NGBoost algorithm model 0.898 0.896 0.896 26.463 0

The analysis of variance is used for both analysis and judgment in order to provide a more
accurate evaluation of the validity of the model. Table 4 presents the findings of the study. It is
clear that the result of the analysis of variance is the overall test of the complete regression equation.
You can see this for yourself in the previous sentence. It is possible to pass judgment on it based
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on the relevance of the analysis that corresponds to it. There is absolutely no practical use for any
part of the regression equation. The fact that the significant value in Table 5 is lower than 0.05
demonstrates that the analysis of the model is performing as expected. The fitting effect may be
evaluated by contrasting the residual sums of squares produced by each model. The residual sum of
squares should be as low as possible for the model-fitting effect to be at its best. The residual sum
of squares for the fusion model is 370.678, the residual sum of squares for the RF algorithm model
is 523.748, and the residual sum of squares for the NGBoost algorithm model is 510.858. These
numbers refer to the fitting effect. In comparison to the RF algorithm and the NGBoost method,
the fusion model performs much better. Both of the models showed a rise in accuracy of 31.2% and
29.7%, respectively.

The validity of the forecast is further examined by using residual statistical analysis, and this is
done so that we may analyze the stability of the model’s predictions. Table 6 displays the statistical
findings associated with the residuals. It is clear that the standard deviation of the standardized
residuals is one, that the mean of the standardized residuals is zero, and that the standardized residuals
are very near normal. The forecast made by the model that was employed in the experiment is an
unbiased estimate. The fusion model has the minimum standard deviation of the predicted value,
and its stability of prediction is superior to that of the basic learner of both the RF method and the
NGBoost algorithm.

Table 5: The results of the R-square test.

Model Statistics minimum maximum average standard deviation Number of cases

Fusion model

Predictive value 39.283 186.695 138.466 45.990 7297
residual -39.283 59.456 0.000 22.540 7297
Standard predicted value -2.157 1.049 0.000 1.000 7297
Standard residuals -1.743 2.638 0.000 1.000 7297

RF Algorithm Model

Predictive value -16.085 189.536 131.754 54.683 7297
residual -88.773 19.450 0.000 26.792 7297
Standard predicted value -2.704 1.057 0.000 1.000 7297
Standard residuals -3.313 0.726 0.000 1.000 7297

NGBoost algorithm model

Predictive value -14.835 189.360 131.978 54.304 7297
residual -90.554 26.811 0.000 26.461 7297
Standard predicted value -2.704 1.057 0.000 1.000 7297
Standard residuals -3.422 1.013 0.000 1.000 7297

It is clear from Tables 4 to 6 that the prediction model is a reliable one that is also objective and
effective. As a result, it is able to more accurately forecast and reflect the mechanical characteristics
of materials made of mild steel. The ability of the fusion model to predict the future is better than
that of a single model, and it can be used as a tool in the real world.

5. Conclusion
In this study, the intelligent fusion technology employs the natural gradient descent algorithm and
the Randomized Bayesian Optimization based RF method to assess and evaluate the mechanical
properties of mild steel materials subjected to tensile stress. By comparing the experimental results of
mechanical properties at three different angles of 30o, 45o, and 60o with the predicted values of the
fusion model, it is determined that the proposed fusion model can accurately reflect the stress-strain
variation trend of this mild steel material (Figure 6), the model is more accurate in predicting the
increasing stage of tension and the decreasing stage of fracture. The variance analysis reveals that
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Table 6: The results of the residuals statistics.

Model Statistics Sum of square Degrees of freedom Dean square Salience

Fusion model
return 1543.160 1 1543.160

residual 370.678 7295 50.813 0b

total 1913.838 7296
return 2181.690 1 2181.690

RF Algorithm Model
return 2181.690 1 2181.690

residual 532.748 7295 71.796 0b

total 2705.438 7296

NG Boost model
return 2151.529 1 2151.529

residual 510.858 7295 70.029 0b

total 70.029 7296

the fusion model’s accuracy is 31.2% and 29.7% more than that of the RF model and the NGBoost
model, respectively. The predictive effect of the fusion model is superior to that of a single model,
and thus has greater practical utility.
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