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Abstract
The current global demand to minimize carbon dioxide (CO2) emissions from Portland cement manufac-
turing processes has led to the use of environmentally friendly additives in cement products. The so-called
green cementitious composites have become increasingly essential in the design of cementitious composite
mixtures, providing the environmental compatibility of concrete as a building material. Engineers face a
difficult problem in predicting the mechanical properties of green composites due to their changing nature
under various circumstances. Machine learning models then emerge as surrogate models to perform this
difficult task. The very design of such models has become a challenge for machine learning. This study
presents a gradient boosting algorithm hybridized with Natural Exponential Evolution Strategies inspired
by nature to predict the mechanical properties of geopolymeric self-compacting concrete. The hybrid
model is used to evolve the parameters, automating the selection of the best set of internal parameters to
estimate the strength properties of geopolymer self-compacting concrete. Results show the predictive
ability superiority of machine learning models and optimization algorithms hybridization compared to
manually tuned models. In addition, this approach can minimize laboratory work, potentially optimize
experimental design, and reduce sample production time and associated activity burden.
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1. Introduction
The use of ecologically friendly admixtures in the manufacture of so-called green cementitious
composites has lately become increasingly essential in cementitious composite mixture design. This
is primarily due to a recent global trend of minimizing the emission of carbon dioxide (CO2) from
Portland cement manufacturing processes [42]. Fly ash, silica fume, and ground granulated blast
furnace slag (GGBFS) are some of the environmentally friendly admixtures used in concrete [16]. In
addition, the fact that these minerals are leftovers from numerous industrial operations is another
rationale for their utilization [18].

Various industrial activities are considered to be environmentally detrimental; nonetheless, evi-
dence indicates that the building industry is the most significant contributor to global greenhouse
gas (GHG) emissions [60]. Portland Cement (PC) has a substantial influence on GHG emissions as it
is an essential component of concrete [9]. Despite the benefits of PC, its production contributes to
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about 7% of total man-made CO2 emissions into the environment [23]. Around half of the emitted
CO2 by the cement factory comes from the calcination reaction process that involves CO2 extraction
from CaCO3 to form CaO; the other half is due to energy consumption throughout the cement
production process [7]. PC is produced at a rate of almost 4000 million tons per year, making it the
most used binder in construction [48]. According to estimates, global PC usage will exceed 6000
million tons per year by 2060 [53]. GGBFS is produced as a fine waste powder by the metallurgy
sector after blast furnace grinding. Recently, there has been an increase in research into the behavior
of GGBFS concrete properties [33, 41]. Laboratory tests are required in the traditional methods for
determining the compressive strength of a concrete mixture; however, these examinations are both
expensive and laborious. For instance, testing one series of composites in the European Union costs at
least 100 euros. Moreover, due to these tests’ destructiveness, they are not recommended on existing
structures without demolishing a portion of the structure to get the required core sample for the tests.
Another drawback of destructive testing is that it is normally done after 28 days and occasionally
even after 90 days. As a result, the traditional process is ineffective, and the environmental concern of
such green composites gets higher. The need for more research into innovative alternative binders
that use less energy to manufacture and emit less pollution has been highlighted [62]. The usage
of geopolymers [31] has been suggested as a way to mitigate the aforementioned owing to the
environmental friendliness of geopolymers-based concretes as construction materials. It is made by
using alkali activators like sodium hydroxide and sodium silicate to activate the cementitious property
of solid aluminosilicate materials like fly ash, metakaolin, or GGBFS at a low curing temperature
in an alkaline medium [14]. As a green material, geopolymer has an 80 percent smaller carbon
footprint than PC [15]. It has been utilized to make structural elements used in buildings, such as
beams, piles, and columns [25, 24]. Some of the factors that affect the CS of GPC include the silicate:
hydroxide ratio, alkali activator: solid materials ratio, the type of alkali activator, and the number of
solid materials used [32].

Engineers face a difficult problem in predicting the CS of GPC because of its changing nature
due to a variety of circumstances [44]. As a result, a numerical model capable of accurately predicting
the strength performance of this type of concrete, such as a soft computing model, is required to
address this issue [2, 68, 70]. More complex data analysis must be used in such a scenario as well
[5, 30]. In civil engineering, the use of machine learning to solve a variety of problems has been
reported [72, 69]. Such applications include the prediction of CS and tensile strength [8, 50], the
prediction of the adhesion between layers of cementitious composites [13, 12, 59], prediction of
concrete strength [71, 57], prediction of the parameters of soil strength and soil safety factor [29, 46],
among others.

Data intelligence models are alternatives to produce accurate models for green cementitious
properties, avoiding expensive laboratory experiments and the work of specialized labor. Recently,
some efforts can be highlighted in the literature to predict and model mechanical properties through
machine learning and deep learning models. [43] implemented decision trees and support vector
machines to predict the compressive strength of silica fume concrete. Other machine learning models
such as support vector machines, [27, 26, 28] and neural networks [56, 58, 61], random forests [38,
10, 21], and gaussian processes [52, 37] have been used as successful data-driven tools for green
concrete modeling.

Nature-inspired approaches have also been employed to deal with the nonlinear characteristics
of green concrete mechanical properties. [55] and [54] developed a multi expression programming
(MEP) approach to develop predictive models for modeling the mechanical properties of sugarcane
bagasse ash green concrete. [45] used an evolutionary learning strategy for modeling the compressive
strength of sustainable concrete mixtures. [6] modeled the properties of concrete mixtures containing
natural zeolite using a metaheuristic-based machine learning method.

Deep learning has also gained increasing attention of researchers due to its modeling capabil-
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ities. [35] employed deep learning neural networks to model the reinforcement mechanisms in
the microstructure of graphene oxide-silica (GOS) reinforced portland cement composites. [36]
implemented a convolutional neural network to predict the mechanical properties of eco-efficiency
concrete containing diatomite and iron ore tailings. Despite the excellent results reported, deep
learning models have some disadvantages. These models generally require large datasets and a lot of
computational resources for training, resulting in complex models with low interpretability [3].

The gradient boosting model has also been successfully applied to problems of predicting the
mechanical properties of sustainable concretes [66, 34, 51, 21, 63]. The gradient boosting model is
constructed using the ensemble strategy, combining several simple models resulting in an accurate
final model. These features allow handling complex data with non-linear behavior and accommodat-
ing noise in the data [39]. Unlike deep learning models, gradient boosting does not present a great
complexity in the resulting training that is not computationally expensive [1]. In the same way, the
number of parameters to be determined in the gradient boosting model is moderate. In this context,
using metaheuristics is attractive to decide on the best parameters that allow exploring the model’s
predictive capacity [17, 64].

The current study presents a machine learning model approach implementing the gradient
boosting model assisted by an evolutionary algorithm resulting in a hybrid model. The hybrid model
is used to evolve the parameters, automating the selection of the best set of internal parameters for
estimating the strength properties of geopolymer self-compacting concrete. This research aims to
understand the role of the gradient boosting algorithm in predicting the mechanical properties of
self-compacting concrete. In addition, this paper assesses the performance of the exponential natural
evolution strategy optimization algorithm for searching the internal parameters and the accuracy
of the machine learning algorithm results. The results show that the proposed strategy results in a
model with greater predictability that can be used as a tool to assist in the performance of tests as
well as in the prediction of the strength of hardened self-compacting concrete.

2. Material and Methods
This section explains the background for developing the model presented in this paper. First, the
dataset is presented, and its statistical properties are described. The correlation between input data
and outcomes is also shown. Then, the mathematical formulation of the machine learning model is
elaborated in detail, emphasizing the parameters that influence its performance. Additionally, the
Exponential Natural Evolution Strategies optimization algorithm is presented with the necessary
information to show the hybridization procedure. Then, the computational framework is shown
in detail, and the problem of searching for internal parameters of the machine learning model is
presented as an optimization problem. Finally, the section describes the cross-validation strategy
combined with the suitable metrics used to evaluate the model’s performance.

2.1 Self-compacting Concrete Dataset
The experimental work was conducted by [8] using raw materials and fresh mix properties as
predictors and strength properties as the response. The tests were performed on low calcium fly
ash (ASTM class F), ground granulated blast furnace slag (GGBS) and silica fumes as Pozzolanic
materials. The workability of the mixtures was assessed through 5 variables: slump flow, T50 cm,
V-funnel, L-box, and J-ring tests. The hardened properties measured were compressive strength,
split-tensile strength, and flexural strength.

Nine input variables were used to characterize the samples: fly ash, GGBS, silica fume, slump
flow, T50 cm flow, L-box, V-funnel, J-ring and curing age. In addition, three output variables
associated with hardened properties were modeled: compressive strength, split-tensile strength and
flexural strength. Table 1 shows the basic statistics for input and output variables.
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Table 1: Dataset basic statistics. CS: Compressive strength, TS; Split-tensile strength and FS: Flexural
strength.

Input data min mean std max

Fly ash (kg/m3) 270.00 385.71 55.70 450.00
GGBS (kg/m3) 0.00 38.57 51.86 135.00
Silica fume (kg/m3) 0.00 19.28 25.93 67.50
Slump flow (mm) 650.00 670.00 13.41 690.00
T50 cm (s) 3.00 4.02 0.57 4.70
L-box 0.88 0.92 0.03 0.96
V-funnel (s) 9.30 11.11 1.52 14.00
J-ring (mm) 3.00 4.34 0.83 5.40
Age (days) 7.00 16.33 8.94 28.00

Outputs min mean std max

CS (kN/m2) 24.67 32.82 3.45 38.55
TS (kN/m2) 1.04 3.31 1.05 4.62
FS (kN/m2) 1.03 3.49 1.13 4.82

Figure 1 shows the correlation coefficients for the dataset. As observed in the figure, the specimens’
age does not correlate with the other input variables. Such behavior comes from the constitution of the
specimens and is not related to the curing time. Likewise, the curing time has no interference with the
composition of the specimens. On the other hand, age strongly correlates with different resistances,
as observed by the positive correlation values with the output variables: 0.85 for Compressive strength,
0.86 for Split-tense strength, and 0.79 for Flexural strength.

Figure 1: Correlation coefficients among input and output variables.
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2.2 Gradient Boosting

Extreme Gradient Boosting (XGB) is one implementation of Gradient Boosting based on decision
trees where errors are minimized by gradient descent. It has good performance and is considerably
fast when compared to other implementations of gradient boosting, being utilized for supervised
learning [47]. The XGB works as follows [11]: Considering a dataset that has m characteristics
and an n number of samples (x1, y1), ..., (xn, yn) where xi ∈ Rn and yi ∈ R, i = 0, ...n. Let ŷi be the
estimated output of an ensemble tree method obtained from the equations:

ŷi = ϕM (xi) =
M∑
k=1

fk(xi), fk ∈ F (1)

where M represents the number of trees in the model, fk represents the kth decision tree. The
decision tree fk has its depth less than or equal to mdepth.

In the additive boosting method the approximation is increasingly constructed as

ϕM (x) = ϕM–1(xi) + ηfn(x) (2)

where η is the rate of learning and fn(xi) a decision tree adjusted for minimizing the loss function Ln

L(ϕ) =
∑

i
l(yi,ϕM–1(xi)) +

1
2
λ||w||2 (3)

where l = |ŷi – yi| is the loss function, ŷi the predicted output and yi the actual output, T is the number
of leaves of the tree and w is the weight of each leaf, and λ is the L2 regularization term on weights.

2.3 Exponential Natural Evolution Strategies

Natural Evolution Strategies (NES) is a family of evolution strategies that iteratively update a dis-
tribution using information from a gradient estimated based on data from the parameters of the
distribution itself [67]. The general procedure is as follows: the parameterized search distribution
produces a population of solutions. Then the fitness function is evaluated on each of these candidate
solutions. The distribution parameters also include the evolution strategy parameters (in the case
of a Gaussian distribution, these parameters are the mean and the covariance matrix). This strategy
allows the algorithm to learn the landscape structure adaptively.

From the population of candidate solutions, the NES estimates a gradient in the parameters of
the candidate solutions to generate new solutions with the highest expected fitness. Unlike the usual
gradient method, the NES performs a second-order method that renormalizes the update. This
step is crucial as it avoids oscillations, premature convergence, and undesired effects resulting from a
specific parameterization. This process is repeated until a stopping criterion is met.

The Exponential Natural Evolution Strategies (xNES) is an improvement of the Natural Evolution
Strategy methodology where the natural gradient is pursued to update the parameters in search of
higher expected fitness [19]. Let d be the dimension of the problem, f the fitness function, µ the
mean, A the covariance matrix, n the population size, zi the sample in local coordinates, xi is the
candidate solution coordinates, N(0, I) a normal distribution, G the gradient in the natural coordinate
system,ηB the covariance learning rate, ηµ the mean learning rate, ησ the scale learning rate, and ui
the utility function used for fitness shaping. The pseudo-code of xNES is presented in Algorithm 1.
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The variables described previously are given below:

n = 4 + [3 log(d)] (4)
ηµ = 1 (5)

ησ = ηB =
3
5
· 3 + log(d)

d
√

d
(6)

ui =
max(0, log( n

2 + 1) – log(i))∑n
j=1 max(0, log( n

2 + 1) – log(j))
–

1
n

(7)

The stopping criteria are commonly the number of fitness function evaluations or a user-defined
number of generations.

Data: d ∈ N, f : Rd → R,µ ∈ Nd , A ∈
Ndxd

σ← d
√

|det(A)|
B← A/σ
while stopping condition not met do

for i ∈ {1, ..., n} do
zi ← N(0, I)
xi ← µ + σB · zi

end
sort{(zi, xi)} with respect to f (xi)
Gδ ←

∑n
i=1 ui · zi

GM ←
∑n

i=1 ui · (zizT
i – I)

Gσ ← tr(GM )/d
GB ← GM – Gσ · I
µ← µ + ηµ · σB · Gδ

σ← σ · exp(ησ/2 · Gσ)
B← B · exp(ηB/2 · GB)

end
Algorithm 1: The xNES Algorithm.

2.4 Hybrid Computational Approach
Figure 2 shows the framework responsible for producing an optimized parameters machine learning
model. A hybrid approach was used where an optimization algorithm, in this case, xNes, acts to
enhance machine learning model results. The algorithm seeks to minimize the target metric at each
iteration. RMSE was chosen as the target metric. Each individual in the population embodies a set
of different machine learning model internal parameters values. The initial population is randomly
generated, and new parameter sets are tried at each iteration according to the optimization algorithm
strategy. In this work, we used a population of 25 individuals throughout algorithm execution.

The Gradient Boosting model depends on the adjustment of four parameters, Learning rate,
number of weak estimators, Maximum depth, and Regularization parameter. Then, each candidate
solution results in a 4 variable set. Table 2 describes the parameters optimized by xNES and their
respective search domain.

A new machine learning model is trained and tested whenever the optimization algorithm
generates a new parameter set. The training process uses a k-fold cross-validation strategy with
k=7. In the testing process, the RMSE of that candidate solution is calculated and used as the fitness
function in the optimization algorithm. The xNES steps shown in Algorithm 1 are followed until
the stopping criterion is reached, herein, 40 iterations. At each iteration of the algorithm, to generate
a new population, the previous population is ranked, the gradient in the natural coordinate system is
calculated, and strategy parameters update.
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Figure 2: Flowchart of Exponential Natural Evolution Strategies and Gradient Boosting hybrid approach.

After the stopping criterion is met, the evolutionary cycle ends and the best solution found
contains a model with optimized internal parameters. This procedure is performed repeatedly
independently to obtain the hybrid algorithm’s overall performance and stability metrics.

Table 2: Encoding of candidate solutions. The column IP indicates the Internal Parameter in the xNES
encoding.

Estimator Encoding Description Settings/Range

XGB x1 Learning rate, η [10–6, 1]
x2 No. weak estimators, M [10, 500]
x3 Maximum depth, mdepth [1, 20]

x4 Regularization parameter, λ [0, 100]

3. Results and Discussion
The computational framework presented in Figure 2 was implemented on python programming
language based on implementations adapted from pandas [40], NumPy [22], and scikit-learn frame-
work [49], running on a computer environment described as follows: Intel(R) Core(TM) i7-9700F
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(8 cores of 3 GHz, and cache memory of 6MB), 32 GB RAM, and operating system Linux Ubuntu
18.

The computational framework was executed 30 times independently, with different random
seeds to gather statistical information on the models’ performance. The XGB model training depends
on random numbers. As a consequence, different random seeds may lead to different performances.
Besides, the dataset was shuffled before the 7-fold split on each independent run. This procedure
was adopted to add robustness to the results obtained by the hybrid model. The metrics shown in
Table 3 were used for models’ assessment.

Table 3: Performance metrics: yi is the observed value, ŷi is the correspondent predicted value, ŷi is the mean
of the measured values, and N is the total number of samples in the dataset.

Name Expression

R2
N∑
i=1

(ŷi – ŷi)2/
N∑
i=1

(yi – ȳ)

MAE
1
N

N∑
i=1

|yi – ŷ|

RMSE

√√√√ 1
N

N∑
i=1

(yi – ŷ)2

MAPE
100
N

N∑
i=1

∣∣∣∣ yi – ŷ
yi

∣∣∣∣

Table 4 shows the results obtained after 30 independent runs of the computational framework
outlined in Figure 2. The first column of Table 4 indicates the output variable where CS indicates
compressive strength, FS represents the flexural strength, and TS the split-tensile strength. The
second column shows the machine learning and soft computing models used for comparison. The
acronym XGB represents the hybrid gradient boosting model, while the ANN model is a neural
network and the GEP a gene expression model both developed by [8]. Results in parentheses indicate
the value of the standard deviation calculated in the 30 independent runs. The statistical metrics
obtained for ANN and GEP were calculated under the same dataset. The performance reported
by [8] is then used as the benchmark for the approach developed in this study. The third, fourth,
fifth and sixth columns show the results for the metrics for Coefficient of Determination (R2), Root
Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE), respectively. Metrics that were not available or could not be calculated were left blank.
GEP model was implemented in this study, which allowed the calculation of all performance metrics
for comparisons.

The results in Table 4 show that the proposal presented in this paper presented better results for
all metrics than those reported by [8]. In addition, the model presented consistent results throughout
the independent runs, as can be verified by the low value of the standard deviations compared to the
averages obtained by the hybrid model. A considerable improvement was obtained in the modeling
of CS and FS, as can be seen by the coefficient R2.

Considering RMSE and MAE metrics, we can also observe that the values reached by the hybrid
model were half for the RMSE and MAE metrics for all output variables, CS, FS and TS. On the
other hand, the mean percentage error for FS and TS was slightly better than ANN and GEP. As
observed in the table, using mean percentage error as a reference, there was a reduction of 12% for
FS and 8% for TS. In contrast, the MAPE for the CS had a considerable improvement reaching an
average value of 3.36%, much lower than the 11.1% calculated for the reference paper.
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Table 4: Results obtained averaged 30 independent runs of the computational framework. Values in parentheses
indicate the standard deviation. Results for ANN and GEP reported by [8].

Estimator R2 RMSE MAE MAPE

CS XGB 0.800 (0.041) 1.500 (0.150) 1.093 (0.121) 3.360 (0.363)
ANN 0.455 (—–)
GEP 0.455 (—–) 3.33 (—–) 2.02 (—–) 11.10 (—–)

FS XGB 0.920 (0.041) 0.305 (0.076) 0.217 (0.050) 8.621 (2.412)
ANN 0.568 (—–)
GEP 0.567 (—–) 0.810 (—–) 0.690 (—–) 9.822 (—–)

TS XGB 0.936 (0.030) 0.253 (0.060) 0.182 (0.047) 7.921 (2.132)
ANN 0.730 (—–)
GEP 0.729 (—–) 0.550 (—–) 0.420 (—–) 8.605 (—–)

Taylor diagrams [65] provide a way to graphically summarize how closely a model (or a set
of models) matches observations. The similarity between the two standards is quantified in their
correlation, their centered mean square difference, and the amplitude of the variations (represented
by their standard deviations). These diagrams help assess various aspects of models or assess the
relative predicting ability of different models.

Figure 3 shows the Taylor diagrams for compressive strength, flexural strength and split-tensile
strength. Each dot represents an independent run. A total of 30 runs were performed. The Taylor
diagrams show that the results were consistent across all runs. The simulations result in red dots in
dense clusters in all three analyzed cases. For the Compressive strength, the values of correlation
coefficients were greater than 0.80. For flexural strength and split tensile strength, the coefficients
were greater than 0.90, indicating an excellent fit to the experimental data.

Figure 3: Taylor diagrams for compressive strength, flexural strength and split-tensile strength. Each dot
represents an independent run. A total of 30 runs were performed.

The accurate results are due to the predictive capacity of the gradient boosting model combined
with the search for the best parameters performed by the xNES algorithm. This process leads to
robust and reliable results as it was implemented in a 7-fold cross-validation strategy with shuffling,
which minimizes the empirical structural risk of the model outcomes [4], ensuring the reliability of
the predictive capacity of the hybrid model.
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Figure 4: Distribution of internal parameters.

Figure 4 shows the distribution of internal parameters over 30 independent runs. The parameters
found for the best individual in the population were chosen to build the machine learning model
in each independent run. The boxplots depicted in figure 4 show the variation of the internal
parameters. This distribution can suggest or indicate possible values for the choice of parameters
in similar problems that were not addressed in this study. The boxplots representation was chosen
because it allows a good idea of the distribution by parameters by presenting relevant information
such as the median, the interquartile range, and possible outliers.

The learning rate showed a similar interquartile range for the three outcomes, but the median
value was higher for flexural strength, with learning rates closer to 1. The learning rate indicates
how quickly the model learns. Each tree added modifies the overall model, and the learning rate
controls the magnitude of the changes, as can be verified in Eq (2). The lower the learning rate, the
slower the model learns. The advantage of the slower learning rate is that the model becomes more
robust and efficient, leading to better performance.

The tree depth was greater for the compressive strength. A greater depth value indicates that more
complex models were used to compose the additive boosting model. The median depths in the final
models were smaller than 5, presenting outliers for flexural and split-tensile strength. The median
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values for the penalization in the loss function are smaller than 20 for all outputs. The interquartile
interval for the number of estimators M lies between 100 and 400 estimators for all outcomes, with
median values around 300 for compressive and flexural strength and M = 250 estimators for tensile
strength.

Figure 5: Left: Comparison of observed and predicted values averaged (over 30 runs). Top: Compressive
strength, middle: Flexural strength and bottom: Split-test strength. Right: Scatter plots for the best model in
30 runs according to RMSE for Compressive strength, Flexural strength and Split-test strength.

Figure 5 shows the comparison between the observed values and the average in 30 runs of the
predicted values (left) and the scatter plot of the best model in 30 runs according to the RMSE (right).
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The red curve of the mean values predicted by the XGB model also presents a shaded area
representing the 95% confidence interval of the predictions. We can see that the confidence interval
inside the curve is small, as seen from the small standard deviation values in the Table. The scatterplot
plots show the best performance of the models over 30 runs with the associated metrics that were
calculated. In addition, an excellent fit of the predicted and real strength values is observed for
compressive, split-tensile and flexural strength.

The relationship between the composition of the mixture and the mechanical properties of self-
compacting hardened GGBS concrete is different from conventional concretes. These characteristics
increase challenges to modeling such properties with machine learning models. GGBS concrete
allows the reduction of cement, replacing it with blast furnace slag, reducing cost and environmental
impact. The replacement can attain approximately 35% cement by the blast furnace slag. GGBS
concrete is a mixture that presents mechanical properties superior to conventional concrete and with
the advantage of fewer voids. The drawbacks of modeling the relationship between the characteristics
of fresh concrete and its the mechanical properties reported in the literature are easy to perceive when
observing the results reported by [8] in Table 4. On the other hand, the hybrid model proposed in
this study achieved better results due to the synergy between the machine learning model and the
nature-inspired optimization algorithm. The relevance of this research is due to the combination
of a robust machine learning model and an efficient and easy-to-implement search algorithm. The
gradient boosting model efficiently exploited its parameters by the nature-inspired xNES algorithm,
resulting in outstanding performance even with a limited dataset.

The contribution of this study is the proposal of a hybrid approach for a machine learning-based
tool for predicting the mechanical properties of self-compacting concrete. The computational
framework is flexible and allows automatic search of the machine learning model. The limitation of
this study lies in the small dataset, which does not allow a comprehensive and robust assessment of
the model’s performance. Testing the model on larger sets is recommended, but obtaining more data
is costly and time-consuming. In addition, the model presents deficiencies in interpretability, which
is interesting for the understanding of structural designers and engineers at the construction site. An
improvement to the proposed approach is the automatic selection of input variables [20] aiming to
produce models with similar accuracy levels but with few variables, reducing the model complexity.

4. Conclusion
This study focused on developing a gradient boosting algorithm hybridized with nature-inspired
Exponential Natural Evolution Strategies to predict the mechanical properties of geopolymer self-
compacting concrete. The algorithm developed in this paper was compared with other strategies such
as neural network approach and gene expression programming to better understand the performance
of the proposed approach.

i. The hybrid algorithms showed better performance with minor errors between observed and
predicted values.

ii. The level of accuracy of the hybrid technique was compared with other soft-computing models
and led to a more robust and more accurate model indicated for compressive strength, split-tensile
strength, and flexural strength, observed by the averaged correlation coefficients (R2) value equal
to 0.80, 0.92, and 0.936, respectively.

iii. The smallest error values, MAE (1.093 MPa for CS, 0.217 MPa for FS, and 0.182 MPa for FS),
also confirm the high accuracy of the hybrid model, while other algorithms present higher values
for these errors.

iv. The application of several statistical metrics also confirms that the proposed model improves the
model’s precision, minimizing the error difference between the desired and predicted results.

The machine learning approach combined with an evolutionary search on internal parameters
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provides an accurate alternative to model the relationship between the constituents of concrete
mixtures and the mechanical properties. Combining a robust machine learning model com with an
efficient model optimization algorithm attained better results than those previously reported in the
literature. However, the size of the dataset did not allow a comprehensive evaluation of performance.
In addition, one of the limitations of the model is its low interpretability. This aspect is relevant
because it predicts the strength properties of concrete since it is a time-consuming task to have
a result of concrete strength. This approach can minimize laboratory work, potentially optimize
experimental planning, and reduce specimen production time and the burden of associated activities.
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