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Abstract 

Hydrological time series forecasting is one of the hot topics in the domain of statistical hydrology. Providing 

accurate forecasting can contribute to diverse applications for catchment sustainability and management. Dew 

point temperature (Tdew) is one of the complex hydrological processes that highly essential to be quantified 

accurately for several catchment activities such as crops, agriculture, and others. In this study, three types of 

models’ recursive strategy, direct strategy, and DirRec which is the combination of recursive and direct 

strategies were adopted to obtain h-steps ahead predictions of Tdew. Ten years monthly scale dataset of Tdew at 

two meteorological stations (Beach and Cavalier) located at the North Dakota, USA, were used for the 

modeling development. The performance of the considered models was compared with two benchmark 

models: autoregressive moving average (ARIMA) and exponential smoothing (ETS). Modeling results 

indicated that, compared with the benchmark models, the proposed methods gave good results for the multi-

ahead forecasting. For instance, for Cavalier station, the root mean squared prediction errors obtained from 

the proposed and benchmark methods when the forecast horizon is 12 are as follows: recursive strategy 

(RMSPE = 3.731) direct strategy (RMSPE = 3.385), DirRec (RMSPE = 3.141), ARIMA (RMSPE = 12.957), 

and ETS (RMSPE = 27.479). 

Keywords: Dew point temperature; North Dakota; h-steps ahead predictions. 

1. Introduction 

Hydrological cycle processes modeling is one of the essential concern for hydrologists [1], [2]. This is due to 

the actual association of the high complexities of the nature pattern [3]. In various fields, such as hydrology, 

agriculture, agronomy, and climatology, dew point temperature (Tdew) estimation is considered highly 

important for its role in the calculation of the relative humidity, actual vapour pressure, and because of its 

importance for plants survival in areas with low precipitation [4]. In addition, dew point presented a highly 

significant hydrological process that contribute to several water resource planning, management and 

sustainability [5], [6]. Further, there are several watershed hydrological engineering practice, which require 

precise quantification for the dew point temperature [7]. Moreover, dew point temperature is an important 

parameter for the prediction of long-term changes in climate [8]. Over the last few decades, artificial 

intelligence (AI) models have found vast application in the modeling and estimation of various engineering 

and sciences problems [9]–[12]. However, a remarkable advancement has been observed within the natural 

process applications such as hydrology [13], [14], climate [15], morphologies [16], [17] and environnement 

[18], [19]. 

Numerous soft computing models have recently been developed for Tdew estimation [20], [21]; for 

instance, the use of artificial neural networks (ANN) model for 1 to 12 h ahead Tdew prediction based on 

several input parameters (such as relative humidity, air temperature, vapor pressure, solar radiation, wind 

speed, rainfall, etc.) has been reported [22]. The outcome of the study showed that ANN model succeeded in 
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achieving accurate Tdew prediction in the state of Georgia, USA. Furthermore, the study by [23] reported the 

use of ensemble ANN models prediction of up to 12 h Tdew. The study relied on Fuzzy membership functions 

(in consideration of the day of the year) for the identification of the weights of the developed ANN structure. 

ANN model has been used with the Levenberg-Marquardt algorithm by [24] for the prediction of hourly Tdew; 

the performance of both models was compared with that of a multiple linear regression (MLR) model and 

from the results, the use of wind vector, climate variables and weather conditions as inputs was found to 

slightly improve the accuracy of both MLR and ANN models. However, the ANN and Levenberg-Marquardt 

algorithm performed significantly better than the MLR model. The use of two ANNs (i.e., generalized 

regression neural networks, GRNN, and Kohonen self-organizing feature maps, KSOFM) and two ANFIS 

models (i.e. ANFIS with sub-clustering, ANFIS-SC, and ANFIS with grid partitioning, ANFIS-GP) for daily 

Tdew prediction at 3 stations in the Korean Republic has been reported [8]. During the study, different 

combinations of air temperature, sunshine hours, relative humidity, wind speed, and saturation vapour 

pressure were used as inputs and from the results, the performance of the models was similar except for the 

KSOFM model, which performed the least. The performance of ANN and gene expression programming 

(GEP) models in daily Tdew prediction has been compared in the Korean republic using different climatic 

parameters [25]. The outcome of the study showed that the GEP model achieved a higher level of 

performance than the ANN model in daily Tdew prediction. 

Extreme learning machine (ELM) model has been reportedly used in daily Tdew prediction at two stations 

in Iran; the performance of the ELM model was compared with those of ANN and SVR models and the ELM 

model was found to achieve better performance than the other two models in terms of achieving accurate 

prediction [26]. Another study in the USA relied on ANN and MLR for daily average Tdew prediction in 

southwest Georgia (USA) [27]. Due to the lack of metrological variables, only temperature and precipitation 

were used in the study as inputs and the results showed that the ANN model performed reasonably better than 

the MLR model. However, the error levels of both models for the colder Tdew were high due to data 

unavailability. The performance of GEP, the M5 model tree, and SVR in the estimation of daily Tdew of 

Tabriz, Iran using different climatic parameters has been evaluated [28]. Notably, the M5 model tree model 

outperformed the rest of the models in achieving better prediction performance. SVR and ELM were used by 

[14] for daily Tdew prediction in the humid and semi-arid regions of India. The input variables used for both 

models were relative humidity, wet bulb temperature and vapour pressure and from the results, the 

performance of the ELM model was superior to that of the SVR model. Also, recently there have been several 

investigation on the implementation on advance machine learning approaches for the average dew point 

temperature prediction [29], [30]. 

Several other AI implementations have been observed for the Tdew simulation such as hybridized AI 

models with nature inspired optimization algorithms [4], the capacity of some new data mining [7]. Although, 

there have several investigations for Tdew using different AI models. There is still several drawbacks have 

been approved with the development of classical version of AI models such as ANN, SVR, ANFIS models 

such as the overfitting, learning process limitations, hyperparameters tuning [31]–[34]. Hence, the exploration 

of new version of robust soft computing technologies to overcome the mentioned limitations is always the 

motive for engineers and decision makers [35]–[37]. In addition, based on the researches discussed above, the 

main aim generally has been paid to forecasting one-step ahead prediction of Tdew. In many scientific fiels 

including meteorology and hydrology, the one-step ahead forecast may not be informative because the 

decision makers may need long-term forecasts to manage risks properly. Thus, h-steps ahead (h > 1) 

prediction of Tdew may be more helpful for decision makers compared with one-step ahead prediction since 

the former allows to make a long-term plans easily. 

From the above-discussed arguments, the main goal of this paper is to introduce three strategic based on 

h-steps ahead prediction techniques called recursive strategy, direct strategy, and DirRec strategy which is 

the combination of recursive and direct strategies to effectively obtain h-steps ahead predictions of Tdew . A 

real-observation of Tdew from two stations is used for building and testing the proposed AI-models that the 

case studies consist of one-month interval for a ten-year period. The prediction performance of the considered 

h-steps ahead prediction techniques are compared with favourably existing methods via several error metrics. 

2. Materials and Methods  

2.1 Case study  

In the current research, two meteorological stations (Beach and Cavalier) located at the north Dakota were 

used for the modeling development. Time series of Tdew for 10 years’ time period (January, 2010 – December, 

2019). The time series plots of the observed Tdew are presented in Figure 1. In addition, the summary statistics 

for the observed Tdew for each station are reported in Table 1. The Case study and meteorological stations 

location presented in Figure 2. 
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Figure 1. Time series plots of monthly Tdew values during 2010-2020; Beach station (upper panel) and 

Cavalier station (lower panel). 

 

Table 1: Summary statistics of monthly Tdew values during 2010-2020. 

Station Min Mean Max STD Skewness Kurtosis 

Beach -21.5170 -0.4176 15.1690 8.9011 0.0120 1.9180 

Cavalier -22.3740 -0.7563 16.6320 11.3934 -0.1365 1.7736 
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Figure 2. The location of the selected meteorological stations at North Dakota. 

2.2 Applied methods explanation 

This section is devoted to present the details of the h-steps ahead prediction techniques. Let {𝑦1, 𝑦2, … , 𝑦𝑛} 
denote a realization of the stochastic process 𝑦. It is of a great interest to predict a future realization of this 

process consisting of ℎ = 1,2, … ,𝐻 , where h denotes the forecasting horizon, values conditionally on 

{𝑦1, 𝑦2, … , 𝑦𝑛}, i.e., {𝑦𝑛+1, 𝑦𝑛+2, … , 𝑦𝑛+𝐻}. In this context, the first strategy called recursive strategy 

repeats several one-steps ahead prediction procedures until all the predictions in the forecast horizon are 

obtained. In more detail, let f and e respectively denote the functional dependency between the past 

observations and modelling error. Then, a one-step ahead prediction is first obtained based on the functional 

dependency between the past observations as follows: 

 𝑦𝑡+1 = 𝑓(𝑦𝑡 , 𝑦𝑡−1, … , 𝑦𝑡−𝑑+1) + 𝑒 (1) 

where 𝑡 ∈ {𝑑,… , 𝑛 − 1} denotes the embedding dimension (see e.g., [38], [39]). Let 𝑓 denote the trained 

model obtained by one-step ahead prediction. Then, the H-steps ahead predictions are given by: 

 

𝑦𝑛+ℎ = {

𝑓(𝑦𝑛, 𝑦𝑛−1, … , 𝑦𝑛−𝑑+1), 𝑖𝑓ℎ = 1,

𝑓(𝑦𝑛−ℎ−1, … , 𝑦𝑛+1, 𝑦𝑛, … , 𝑦𝑛−𝑑+ℎ), 𝑖𝑓ℎ ∈ {2, … , 𝑑}

𝑓(𝑦𝑛+ℎ−1, … , 𝑦𝑛+ℎ−𝑑), 𝑖𝑓ℎ ∈ {𝑑 + 1,… , 𝐻}.

 

(2) 
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The workflows of one-step ahead and h-steps ahead prediction are presented in Figure 3. From this 

figure, the h-steps ahead prediction procedure can be considered as a repeated case of one-step ahead 

prediction process. 

A)          B) 

 
 

Figure 3: Workflow of one-step-ahead (A)) and h-steps-ahead (B)) forecasting. The trained model returns the 

predicted value of time series at step t+1. z-1 denotes the unit delay operator, i.e., yt-1 = z-1yt. 

In recursive strategy, the computed predictions may deviate greatly from their true values when the 

forecasting horizon is greater than the embedding dimension, i.e., h > d. This is due to fact that the recursive 

strategy is sensitive to the accumulation of errors with h [39]. 

The direct strategy, contrary to recursive strategy, applied H independent models in each forecasting 

horizon to obtain H-steps ahead predictions. Let fh denote the trained model at step h. Then, the realization at 

this step is given by: 

 𝑦𝑡+ℎ = 𝑓ℎ(𝑦𝑡 , 𝑦𝑡−1, … , 𝑦𝑡−𝑑+1) + 𝑒 (3) 

where 𝑡 ∈ {𝑑, … , 𝑛 − 𝐻} and ℎ ∈ {1,2, …𝐻}. The forecasts at step h are obtained via the learned models 𝑓ℎ are 

then obtained as follows: 

 𝑦𝑛+ℎ = 𝑓𝑛(𝑦𝑛 , 𝑦𝑛−1, … , 𝑦𝑛−𝑑+1) (4) 

In other words, this strategy uses directly the observed values, rather than approximates values, to obtain 

predictions, which results in reducing accumulation of errors. On the other hand, it may have lack of 

forecasting accuracy since the direct strategy independently obtains the forecasts since the dependencies 

between the observations are ignored in the prediction process. 

The DirRec strategy proposed by [40] computes the predictions by combining recursive and direct 

strategies. In more detail, similar to the direct strategy, the DirRec strategy computes the predictions by 

constructing different models in each forecast horizon but enlarges the set of inputs by adding variables 

corresponding to the forecasts of previous step as in recursive strategy [39]. Independently from the previous 

two strategies, the DirRec strategy uses different embedding size for all horizons. Let 𝑓ℎ denote model at 

horizon h, then, the true realization of future observations are defined by: 

 𝑦𝑡+ℎ = 𝑓ℎ(𝑦𝑡+ℎ−1, … , 𝑦𝑡−𝑑+1) + 𝑒 (5) 

with 𝑡 ∈ {𝑑, … , 𝑛 − 𝐻} and ℎ ∈ {1, … , 𝐻}. Then, the DirRec strategy computes the forecasts using h learned 

models as follows: 

 
𝑦𝑛+ℎ = {

𝑓ℎ(𝑦𝑛 , … , 𝑦𝑛−𝑑+1), 𝑖𝑓ℎ = 1,

𝑓ℎ(𝑦𝑛+ℎ−1, … , 𝑦𝑛+1, 𝑦𝑛 , … , 𝑦𝑛−𝑑+1), 𝑖𝑓ℎ ∈ {2, … , 𝐻}
 

(6) 

As showed by [39], [41], this strategy outperforms direct and to recursive strategies.  

In this study, the neural network (NN) machine learning algorithm with one-hidden layer is used with 

the direct and recursive strategies to obtain h-steps ahead predictions. Let 𝑚(𝑦)  denote the model 

component, the considered NN algorithm is given by: 

 
𝑚(𝑦) = 𝑏0 +∑𝑏𝑗

𝐽

𝑗=1

𝑔(𝑤𝑗
𝑇𝑦) 

(7) 
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where 𝑤𝑗  is the vector of weights associated with 𝑗𝑡ℎ  hidden node, 𝑏0, 𝑏1, … , 𝑏𝑛 are the weights for the 

output note and, J denotes the number of hidden nodes. Herein, the logistic function 𝑔(𝑎) = 1 (1 + 𝑒𝑎)⁄  

is considered. On the other hand, for the DirRec strategy, the linear model: 

 
𝑚(𝑦) =∑𝛽𝑗

𝑝

𝑗=1

𝑦𝑗 
(8) 

where 𝛽𝑗  denotes the model parameter for 𝑗𝑡ℎ input variable, the gradient boosting algorithm proposed by 

[40], with univariate P-splines are considered to obtain predictions.  

3. Application results and assessment 

The prediction performance of multi-steps ahead prediction methods are evaluated using ten years of monthly 

data. The performances of the methods were compared with three existing traditional prediction methods: 

autoregressive moving average (ARIMA) and exponential smoothing (ETS). The results for the benchmark 

methods are obtained using the R package “forecast” [42]. The out-of-sample prediction performance of the 

methods are compared with three error metrics: root mean square prediction error (RMSPE), mean absolute 

prediction error (MAPE), and average absolute percent relative prediction error (AAPRPE) as follows: 

 

𝑅𝑀𝑆𝑃𝐸 = √
1

𝐻
∑(𝑦𝑛+ℎ − 𝑦𝑛+ℎ)

2

𝐻

ℎ=1

 

(9) 

 
𝑀𝐴𝑃𝐸 =

1

𝐻
∑|𝑦𝑛+ℎ − 𝑦𝑛+ℎ|

𝐻

ℎ=1

 
(10) 

 
𝐴𝐴𝑃𝑅𝑃𝐸 =

100

𝐻
∑(|

𝑦𝑛+ℎ − 𝑦𝑛+ℎ
𝑦𝑛+ℎ

|)

𝐻

ℎ=1

 
(11) 

 

With all the considered methods, the first eight years (2010-2017) are used to construct model. Then, H 

= [1, 6, 12]-steps ahead predictions are computed based on the constructed models and all the three-error 

metrics (e.g., RMSPE, MAPE, and AAPRPE) are computed. While doing so, first, the 96 observations in the 

dataset (eight years of data), called training data, are used to construct models and to predict H = [1, 6, 12]-

steps ahead observations. Then, the training sample is increased by one month and the next H = [1, 6, 12]-

steps ahead observations are predicted. This process is repeated until all the observations in the forecast 

horizon predicted. In addition to the computed error metrics, the standard deviation for each forecast horizons 

are computed to compare the stability of the methods. 

The results are presented in Tables 2 and 3. From these tables, it is obvious that machine learning based 

h-steps ahead methods produce improved prediction performance compared with ARIMA and ETS. In 

addition, the results have shown that all the machine learning based methods produce similar performance for 

short term prediction (i.e., h=1). In this case, the recursive and direct strategies produce better performance 

than the DirRec strategy. For moderate forecast horizon (i.e., h = 6), the direct strategy produces improved 

performance than all the methods. On the other hand, for long-term forecast (i.e., h = 12), the DirRect strategy 

produces the best performance among others. Tables 2 and 3 also present the standard error values of the 

computed error metrics for all forecast horizons and methods. From the results, it is clear that the DirRect 

strategy generally produces smaller standard errors compared with other alternatives. This result indicates that 

the DirRect strategy produces more stable results among others. All in all, our results demonstrate that, the 

direct strategy seems a better prediction method for short-term and moderate-term predictions while the 

DirRec strategy is more suitable one among others for long-term predictions. 

Table 2. Computed performance metrics for Beach station with standard deviations given in bracket. 

 

Metric Method Forecast horizon 

  H=1 H=6 H=12 

 

 

RMSPE 

Direct 3.029 

(2.805) 
3.821 

(1.265) 
4.928 

(1.150) 
Recursive 2.939 

(2.506) 
4.174 

(1.281) 

4.064 

(0.697) 
DirRec 3.019 

(2.888) 
3.870 

(1.414) 
4.005 

(0.586) 
ARIMA 5.107 

(3.683) 
10.818 

(3.160) 
10.960 

(1.174) 
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ETS 5.276 

(4.748) 
18.225 

(12.011) 
27.400 

(18.486) 
 

 

MAPE 

Direct 3.029 

(2.506) 
2.938 

(0.818) 
3.725 

(1.142) 
Recursive 2.939 

(2.805) 
3.117 

(0.769) 
3.150 

(0.740) 
DirRec 3.019 

(2.888) 
3.024 

(0.925) 
3.065 

(0.515) 
ARIMA 5.107 

(3.683) 
9.560 

(3.244) 
8.704 

(1.168) 
ETS 5.276 

(4.748) 
15.670 

(11.211) 
23.692 

(16.304) 
 

 

AAPRPE 

Direct 50.889 

(60.966) 
7.454 

(2.373) 
5.527 

(2.063) 
Recursive 51.124 

(62.083) 
8.065 

(2.208) 
4.630 

(1.685) 
DirRec 43.902 

(43.968) 
8.197 

(2.508) 
4.134 

(0.874) 
ARIMA 88.598 

(94.724) 
23.266 

(11.050) 
9.239 

(1.688) 
ETS 81.320 

(85.377) 
51.539 

(41.870) 
38.661 

(36.703) 
Table 3. Computed performance metrics for Cavalier station with standard deviations given in bracket. 

 

Metric Method Forecast horizon 

  H=1 H=6 H=12 

 

 

RMSPE 

Direct 2.425 

(2.117) 
3.044 

(1.171) 
3.731 

(1.418) 
Recursive 3.022 

(2.429) 
3.497 

(1.155) 
3.385 

(0.625) 
DirRec 2.605 

(1.848) 
3.120 

(0.849) 
3.141 

(0.465) 
ARIMA 5.709 

(3.379) 
13.313 

(3.573) 
12.957 

(1.359) 
ETS 4.730 

(3.697) 
20.989 

(10.416) 
27.479 

(9.226) 
 

 

MAPE 

Direct 2.425 

(2.117) 
2.559 

(1.052) 
3.047 

(1.289) 
Recursive 3.022 

(2.429) 
2.903 

(0.999) 
2.726 

(0.534) 
DirRec 2.605 

(1.848) 
2.594 

(0.631) 
2.427 

(0.347) 
ARIMA 5.709 

(3.379) 
11.827 

(3.614) 
11.028 

(1.328) 
ETS 4.730 

(3.697) 
17.616 

(9.607) 
23.840 

(8.640) 
 

 

AAPRPE 

Direct 89.384 

(161.441) 
16.519 

(15.528) 
8.660 

(4.652) 
Recursive 133.294 

(304.348) 
15.325 

(9.502) 
7.389 

(2.979) 
DirRec 93.603 

(214.783) 
15.522 

(8.565) 
6.543 

(3.168) 
ARIMA 247.719 

(534.890) 
45.805 

(27.480) 
17.929 

(5.461) 
ETS 191.400 

(441.876) 
127.020 

(88.968) 
79.103 

(41.610) 
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The boxplots of the computed RMSPE, MAPE, and AAPRPE values for both stations are presented in 

Figure 4. From this figure, it is clear the machine learning based methods produce more stable results than the 

traditional ARIMA and ETS methods. In other words, the traditional ARIMA and ETS methods produce 

higher error values with increasing forecast horizon, while the machine learning based methods produce 

similar results for all forecast horizons. In addition, Figure 4 supports the findings reported in Tables 2 and 3 

that the recursive and direct strategies produce slightly better performance than the DirRec strategy for short 

and moderate forecast horizons while DirRec strategy produces improved results than others for long term 

forecast horizon. 

 

 

Figure 4. Boxplots of the computed RMSPE, MAPE, and AAPRPE values for h = 1, 6, and 12 steps-ahead 

forecast horizon. Beach station (first column), Cavalier station (second column). 

4. Discussion 

In this paper, three machine learning based h-steps ahead prediction procedures, i,e., direct, recursive, and 

DirRec, are discussed and they are applied to two monthly Tdew datasets obtained during 2010-2020 in Beach 

and Cavalier stations. The predictive performance of these methods are compared with each other’s as well as 

two traditional methods; ARIMA and ETS. The numerical analyses produced from the analyses demonstrate 

that the machine learning based h-steps ahead strategies produce improved forecast results (i.e., smaller 

forecast errors) compared with traditional methods. When comparing the performance of ARIMA and ETS 

methods, our results indicate that ARIMA significantly outperforms ETS in most cases. This may be due to 

fact that the model structures of the methods. While ARIMA is a stationary model, the ETS is non-stationary 

model. In ARIMA, the dataset is first transformed to a stationary form and then, the forecasts are obtained 

from the transformed series. Therefore, ARIMA generally produces better forecasts than the ETS. One-step 

ahead forecast may not be informative in many scientific fields such as hydrology and meteorology because 

the decision makers in such areas are generally require long-term forecasts to manage risks properly. Thus, 
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the presented h-steps ahead forecast strategies in this paper can be used with other hydro-climatic variables 

such as river flow, drought indices, and rainfall to obtain long-term forecast. 

5. Conclusion 

The current study was established on the forecasting of dew point temperature (Tdew) using recursive strategy, 

direct strategy, and DirRec to obtain h-steps ahead forecasting. Tdew is considered as highly stochastic and 

complex hydrological processes and thus its quantification and determination are a challenging task. The 

modeling development was of Ten years monthly scale dataset of Tdew at two meteorological stations (Beach 

and Cavalier) located at the North Dakota, USA. The performances of the considered models were validated 

against ARIMA and ETS models. The proposed methods attained good results for the multi-ahead 

forecasting. 

Conflicts of Interest: The authors declare no conflict of interest. 
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