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Abstract 

In the previous studies on the prediction of wave height parameters, only the significant wave height has been 

considered as the unknown parameter to be predicted. However, the other wave height parameters, which may 

be required for the design of coastal structures depending on their importance level, have been neglected. 

Therefore, in this study, novel soft computing methods were used to predict all wave height parameters required 

for the design of coastal structures. To this end, wave data were derived from a buoy located in Southwest Black 

Sea Coast. Then, Multi-layer Perceptron Neural Network (MLPNN) and Adaptive-Neuro Fuzzy Inference 

System (ANFIS) models were developed to predict wave height parameters. Various input combinations were 

selected to create seven different sub-models. These sub-models were applied using developed MLPNN and 

ANFIS models. Accuracy of sub-models were evaluated for each wave height parameters in terms of 

performance evaluation criteria. The results showed that the wave height parameters predicted by the MLPNN 

and ANFIS methods are similar and both methods yield results acceptable for design purposes. However, for 

maximum wave height, Hmax, ANFIS sub-model yields slightly better results. 
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1. Introduction 

Coastal activities such as design of coastal and offshore structures, sediment transport, coastal erosion, and 

environment related coastal studies require an accurate prediction of wave parameters. These parameters can 

be obtained by using long term measurement or observed wave data. However, in practice, the wave data 

required for design are either recorded for short periods or missing and hence the use of complicated wave 

prediction models is inevitable. This situation was mentioned by Mahjoobi et al. (2008) as field observations 

of wave height parameters can be extremely difficult and little wave data are available for engineering purpose 

[1]. Several empirical-based and numerical-based methods have been widely used in literature to predict wave 

characteristics. Coastal Engineering Manual [2], SMB [3], Shore Protection Manual [4], JONSWAP [5] and 

Goda [6] can be classified the empirical-based methods. On the other hand, numerical-based methods such as 

SWAN [7] and WAM [8] can be used for deep water conditions, simulating waves and wave prediction studies. 

Numerical methods are generally based on an energy transfer equation or action balance equation [9]. However, 

the application of both empirical and numerical-based methods requires high amount of time for calculation 

and accurate local bathymetry surveys for implementation. In addition, these methods do not entirely account 

for the complexity and uncertainty of wave phenomena, as stated by Makarynskyy et al. (2005) [10]. Therefore, 

in recent decades, soft computing methods such as Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy 

Inference System (ANFIS), Genetic Programming (GP) and others have been used to predict wave height 

parameters. They make it possible to obtain a great deal of wave data quickly with great success. Soft computing 

methods are considered as a robust technique for coastal studies such as prediction of missing wave data [11]–

[13], forecasting of tidal level [14], [15], reliability assessment [16]–[18], prediction of wave energy [18]–[20], 

and coastal structural stability analysis [21]–[27].   

Focusing on the ANN and ANFIS-based wave parameter prediction models, our review showed that 

several applications exist in the related literature. For example, Tsai et al. (2002) forecasted significant wave 

height at three stations in Taichung Harbor, Taiwan using ANN [28]. Makarynskyy et al. (2005) collected wave 

data from an offshore buoy at the west coast of Portugal. An ANN model was developed to predict significant 

wave height at the location [10]. The performance of the model was evaluated using three different parameter 

such as root mean square (RMSE), correlation coefficient (R) and scatter index (SI). The results showed that 

the developed ANN model can be used to predict short term significant wave height. Mandal and Prabaharan 

(2006) presented a recurrent neural network approach to predict ocean wave [29]. To this aim, wave data were 
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collected from a buoy at 23-meter water depth located in the west coast of India. To evaluate the model 

performance, R parameter was used. Authors indicated that recurrent neural network approach outperform the 

classical ANN models. Zamani et al. (2008) compared the ANN model with instance-based learning (IBL) for 

wind-wave forecasting [30]. Therefore, two sets of meteorological and wave data were collected from two 

different buoy in the southern part of Caspian Sea. Input parameters were selected for the models using average 

mutual information. A comparison was performed between the models based on the R, SI, and RMSE. The 

results showed that the ANN model is better than the IBL model for significant wave height prediction. 

Günaydın (2008) compared the significant wave height prediction performance of the ANN and regression 

methods [31]. The required data were collected from three different buoys located in Atlantic region. The results 

of the study showed that ANN is superior to regression methods for prediction purpose. Kamranzad et al. (2011) 

proposed an ANN model that use the wind speed, wind direction and significant wave height as input [32]. The 

proper input combinations were selected using trial and error method. Wave and wind data were measured from 

a buoy and a meteorological station located in Persian Gulf respectively. R, mean square error (MSE), and index 

of agreement (Ia) parameters were used to evaluate model performance. The results showed that the previous 

wind speed is more effective on the significant wave height prediction in long lead times, while previous wave 

height is more effective in short lead times. Mafi and Amirinia (2017) presented three soft computing models 

such as support vector machine (SVM), ANN, random forest (RF) to predict hurricane wave height [33]. To 

this aim, a huge set of meteorological and wave data were collected from six different buoys located in Gulf of 

Mexico. The SVM, ANN, and RF models were developed using the huge dataset. R, RMSE, SI parameters 

were used to evaluate the model performance. Authors indicated that developed models to predict hurricane 

wave heights accurately. A recent comparison between the ANN and other soft computing methods such as 

extreme learning machine (ELM), and SVM were performed by Shamshirband et al. (2020) for significant wave 

height prediction [34]. The wave data were collected from the two-station located in Persian Gulf. Wind data 

for the study area were collected from the source of European Center for Medium-range Weather Forecast 

(ECMWF). These data were used as input to feed three models and wave data were used as the target values of 

model. Furthermore, the bathymetry maps were obtained, and a numerical-based SWAN model was developed 

for significant wave height prediction. Although the results showed that the performance of soft computing 

models can be considered as similar, it was observed that the ELM model slightly better than others. On the 

other hand, hybrid neuro-wavelet models that is the combination of wavelet decomposition and ANN were also 

presented by a few researchers in literature [35].  

Another soft computing method that used in significant wave height prediction studies is ANFIS. 

Architecture and learning procedure underlying ANFIS were first presented by Jang (1993) [36]. It combines 

the optimization and learning capabilities of neural networks with fuzzy logic linguistic IF-THEN rules which 

consist of membership functions. ANFIS has been frequently used in literature to predict wave parameters. For 

example, Kazeminezhad et al. (2005) predicted significant wave height developing an ANFIS and CEM model 

[37]. The required wave and wind data was collected from a station located in Lake Ontaria, USA. The results 

showed that the ANFIS is superior to CEM model based on the performance evaluation. TÜR and BALAS 

(2010) developed several ANFIS model to predict significant wave height at Filyos region, Turkey [38]. The 

different input combinations that include significant wave height and wave periods were used. Performance 

evaluation of the model was done using RMSE, mean absolute error (MAE), and R. In addition, developed 

model were also compared with the other models presented by Dixit et al. (2015), Kazeminezhad et al. (2005), 

Londhe (2008), Makarynskyy et al. (2005), Mandal and Prabaharan (2006) and Zamani et al. (2008) [10], [12], 

[29], [30], [35], [37]. The comparison showed that the developed ANFIS model superior to other models. 

Authors also showed that the daily significant wave height can be predicted using daily average wave height 

and wave period data recorded at different time intervals. Akpınar et al. (2014) developed an ANFIS model and 

compared it with the four different empirical-based methods (Wilson, SPM, Jonswap, and CEM) [9]. To this 

end, this study focused on the Southern Black Sea. Wind speed, wind duration, significant wave height and 

mean wave period data were obtained for the study. Fetch length, duration, and wind speed were selected as 

input parameters for ANFIS model, whereas significant wave height values were selected as the target. The 

performance evaluation of the predicted results gathered from the models were done using MAE, and R. Authors 

indicated that ANFIS model is superior to empirical-based models. Hashim et al. (2016) developed ANFIS 

model to predict offshore significant wave height [39]. To this end, meteorological and wave dataset were 

gathered from three different buoy located in Atlantic Ocean. Meteorological data such as wind speed, wind 

direction, air temperature, and sea surface water temperature were selected as the input parameters of the model. 

The target of the model was selected as significant wave height. Authors indicated that the including air 

temperature, and sea surface temperature parameters as input, cause an increase on the model performance in 

terms of RMSE values. More recently, a hybrid FIS-based ANFIS significant wave height model was introduced 

by Stefanakos (2016) [40]. Authors indicated that for the first time in literature, fuzzy logic and ANFIS were 
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combined. The results showed that the proposed hybrid model has more accuracy than the standalone FIS and 

ANFIS models. 

The reviewed articles revealed that ANN model is a highly preferred methods to prediction modeling of 

significant wave height. However, ANN-based MLPNN algorithm can be still investigated for prediction of 

wave height. Aforementioned studies were presented to predict significant wave height by researchers. 

However, there is a scarcity on the literature to predict other wave height parameters required for coastal 

activities. In the related literature, studies are found, where revision necessity for the coastal structure design 

formulae due to the rise in the wave height parameters as a consequence of climate change, is reported [41]–

[44]. Therefore, it may be plausible to use wave parameters other than significant wave height during the 

determination of design parameters such as the armor stone weight and wave overtopping. To this purpose, two 

soft computing methods; MLPNN and ANFIS were developed to predict four wave height parameters including 

the significant wave height, Hs: the mean wave height, Hmean: the mean value of the 1/10 highest wave heights, 

H1/10: and Hmax, the maximum value of wave heights (within the wave train), in this study. These parameters 

are given below in detail: 
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where Hi denotes the individual wave heights in a certain time series and n denotes the amount of wave height 

data. 

Another novelty of the present study is that several sub-models were defined and used to obtain the 

numerical results presented. The best sub-models for each wave parameter studied, and for both numerical 

methods were determined. Also, the error parameters for MLPNN and ANFIS sub-models were presented. 

2. Study Area and Data 

The data set used in this study comprises wave height parameters; Hs, Hmean, H1/10, Hmax and the wave periods; 

Ts, Tmean, T1/10, Tmax. These data were gathered from a buoy station located in Southwest Black Sea Coast. This 

station is located on the latitude of 413250 and longitude of 320100 in Filyos Region, Turkey (see Figure 

1). The measurements on the station are performed by Acoustic Wave and Current Profiler device (AWAC). 

These devices are located at 12.5-m depth.  

 

Figure 1. The Study Area and the Location of the AWAC. 
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The wave data covers 2-year measurement of the station in mention. 7949 different readings for each wave 

height parameters obtained. Bilyay et al. (2011) used the same dataset on their study. Authors indicated that the 

dataset has some gaps due to battery and memory cassette changes [45]. The minimum, maximum, mean value, 

skewness, and standard deviation values for the data used were presented in Table 1.  

Table 1. Statistical Properties of Representative Wave Height Parameters. 

Wave Height 

Parameters 

Min 

(m) 

Max 

(m) 

Mean 

(m) 
Skewness Std. Deviation (m) 

Hs 0.03 5.00 0.62 1.98 0.59 

Hmean 0.03 3.32 0.40 2.07 0.38 

H1/10 0.03 6.06 0.78 1.94 0.73 

Hmax 0.03 7.55 1.01 1.88 0.96 

 

Filyos is a region that have some extreme wind and wave characteristics due to nature of Black Sea. Study 

of Özhan and Abdalla (2002) showed that the Black Sea coast including Filyos has higher wave height and 

wind speed values than the other coast of Turkey [46]. Their studies showed that the buoy measurement in the 

region is done in short durations. Therefore, general attempt is estimating wave height using wind information 

of the region. Also, TÜR and BALAS (2010b) studied reliability-based risk assessment of revetment in the 

Filyos region [47]. Design wave height of 5.8-m and 7.50-m was selected for study. 

3. Materials and Methods 

The proposed soft computing forecasting models for the wave prediction consist of two models, namely (1) 

Adaptive Neuro-Fuzzy Inference System (ANFIS), (2) Multi-layer perceptron neural network (MLPNN). In 

this part, selection criteria of input combination, MLPNN theory, ANFIS theory, and model performance 

evaluation criteria were described in an order. 

3.1 Input Combination Selection 

In this study, wave height parameter was selected as the target parameter, while previous values of both wave 

height and period were used as the input of the model. To this end, seven different sub-model were created to 

obtain best prediction of target parameter. In literature several researchers used trial/error manner to select input 

combinations [32], [38], [48]. This manner allows to select different input combinations and then, each 

combination is tested. Similarly, input combinations were selected with trial/error manner in this study. The 

alternative sub-model architectures built by different predictor configurations. These procedure Sub-models 

were given in Table 2, where H(t) is wave height (2-hourly values) and T(t) is corresponding wave period as 

inputs. 

Table 2. Sub-model Architectures for Output H(t). 

 

Sub-Model 
Model Architecture 

Output                 Inputs 

Mod – 1    H(t)              H(t-1), T(t-1) 

Mod – 2    H(t)              H(t-1), T(t-1), T(t-2) 

Mod – 3    H(t)              H(t-1), H(t-2) 

Mod – 4    H(t)              H(t-1), H(t-2), T(t-1) 

Mod – 5    H(t)              H(t-1), H(t-2), H(t-3) 

Mod – 6    H(t)              H(t-1), H(t-3), T(t-1) 

Mod – 7    H(t)              H(t-1), H(t-3), H(t-5) 

For example, the 2nd sub-model (Mod-2) consists of output variable H(t) and input variables 𝐻(𝑡−1), 

𝑇(𝑡−1),and 𝑇(𝑡−2), which denote one time step wave height, one time step past period and two time step past 

period respectively. 

3.2 Multi-layer Perceptron Neural Networks (MLPNN) Model 
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An ANN model imitates human brain activity, and it consists of neurons, which are processing units, as 

stated Balas et al. (2006) [49]. A multi-layer perceptron neural networks (MLPNN) is a type of ANN algorithm 

that consists of two or more layers with neurons in each layer. It is a frequently used supervised learning method. 

The network response is: 

 𝑦𝑖 = 𝑓 (∑ 𝑤𝑖𝑥𝑖 − 𝑡𝑗

𝑛

𝑖=1

) (4) 

where n denotes the total number of input values and their weights, ix  parameter are the input values of a 

perceptron, parameter iw  are weights for each input, tj value is the bias of the perceptron and yj refers to output 

of a perceptron that states activation function values of summation. It is shown in Figure 2. 

 

Figure 2. The Detail of Each Artificial Neuron. 

Two kind of classical activation function is used in MLPNN. The first is hyperbolic tangent function and 

the second is logistic function. They range between -1 to 1, and 0 to 1, respectively. There are hidden layers 

between the input and the output layers. Each neuron layer receives input from the previous layer and gets in 

contact with the next layer by sending an output. Figure 3 shows the activation process of a hidden layer. 

 

Figure 3. The Structure of a General MLPNN Model. 

The output y of a perceptron for hyperbolic tangent sigmoid, or tanh, function in the hidden layers is 

denoted as; 
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 𝑦 = 𝑓(𝑧) = 𝑡𝑎𝑛ℎ(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 (5) 

 

Parameter e denotes natural algorithm, and parameter z denotes the output of a perceptron summation. 

A training data set, which consists of randomly selected input and output values is used to train the 

MLPNN and a testing data set is used to check the success of the model. The performance of the model is 

determined by calculating the performance index, 𝛻𝑅, as: 

 𝛻𝑅(𝑤) =
1

𝑧𝑁
∑ 𝛻𝑆(𝑤, 𝑛)

𝑁

𝑛=1

 (6) 

 

where, N, n, z, and 𝛻𝑆(𝑤, 𝑛) denote the total sample number, the total epoch number, the output layer neuron 

total number, the gradient of total error values, respectively. The updates for weight and bias updates are made 

by; 

 𝛻𝑆(𝑤, 𝑛) = [
𝜕𝑆

𝜕𝑤11
ℎ ⋯

𝜕𝑆

𝜕𝑤𝑗𝑖
ℎ ⋯

𝜕𝑆

𝜕𝑤11
𝑦 ⋯

𝜕𝑆

𝜕𝑤𝑙𝑚
𝑦 ] (7) 

 

The hidden and output layer weights are denoted by 𝑊ℎ and 𝑊𝑦, 

 𝑊ℎ = [𝑤11
ℎ ⋯ 𝑤1𝑖

ℎ ⋯ 𝑤𝑗𝑖
ℎ]𝑗 = 1, … , 𝑠; 𝑖 = 1, … , 𝑘 (8) 

 

 𝑊𝑦 = [𝑤11
𝑦

⋯ 𝑤1𝑖
𝑦

⋯ 𝑤𝑗𝑖
𝑦

]𝑗 = 1, … , 𝑧; 𝑚 = 1, … , 𝑠 (9) 

 

The weight factors are calculated according to the GDM (Gradient Descent Method), 

 𝑤(𝑘 + 1) = 𝑤(𝑘) − 𝜂𝛻𝑅(𝑤) + 𝛼𝛻𝑤(𝑘 − 1) (10) 

 

where, 𝜂 denotes the step size re-evaluated at kth iteration, 𝑤(𝑘 + 1) denotes the weight vector at the (𝑘 + 1)th 

iteration, and 𝛼 denotes the momentum constant selected by the user.  

3.3 Adaptive Neural Network Based Fuzzy Inference – ANFIS  

ANFIS model was introduced by Jang and it makes use of ANN and fuzzy logic [37]. ANFIS can be 

described as a network structure that has the capacity of neural learning of Sugeno type fuzzy systems. This 

network structure is formed of layers of nodes associated with separate nodal functions [50]. For example, a 

Sugeno type FIS including 1 output value (f), 2 input values (x, y) and a rule base with 2 fuzzy rules is given 

below: 

1st rule: 

If 𝑥 is A1 and 𝑦 is 𝐵1 then 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 

 

2nd rule: 

If 𝑥 is A2 and 𝑦 is 𝐵2 then 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 

where Ai and Bi (i=1, 2) are the membership function for input x and y, and the 𝑞𝑖 , 𝑝𝑖  and 𝑟𝑖 (i =1, 2) are the 

parameters used for the Sugeno type first degree fuzzy model. The ANFIS structure is shown in Figure 4, where 

adaptive nodes are indicated by squares and fixed nodes are indicated by circles [37].  
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Figure 4. ANFIS Architecture for Two-input Sugeno Fuzzy Model. 

ANFIS comprises five layers (see Figure 4) and description of each layer can be seen below:  

1st Layer: For a given node, membership degrees, which describe the belonging degree to the fuzzy set, are 

calculated using the membership functions, 𝑂𝑖
1 , is; 

 𝑂𝑖
1 = 𝜇𝐴𝑖

(𝑥) (11) 

where, x denotes the crisp input value for node i , iA and iB  are linguistic terms, and 
iA and

iB denote the 

membership functions.  

For example, bell-shaped curve membership function can be written as follows: 

 
𝜇𝐴𝑖

=
1

1 + [(
𝑥 − 𝑐𝑖

𝑎𝑖
)

2

]
𝑏𝑖

 
(12) 

where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 denote the membership functions curve parameters for the fuzzy if-then rule structure. This 

function yields values between 0 and 1. 

There are several choices for membership functions in the related literature. In the present study, the 

Gaussian curve membership function is used. As it is the most extensively used function in similar studies.  

 

2nd Layer: The nodes in the 2nd layer, labeled by 𝜇, is multiplied by the incoming values, the output is transferred 

to the next layer; see Figure 4. These outputs show the rule strength. The multiplication operation for this layer 

is; 

 𝑤𝑖 = 𝜇𝐴𝑖
(𝑥) × 𝜇𝐵𝑖

(𝑦),  i=1, 2. (13) 

3rd Layer: The equation below shows that the ith node of layer 3 yields the firing strength ratio for the ith rule 

to the firing strength ratios of all of the rules. 

 𝑤̄𝑖 =
𝑤𝑖

𝑤1+𝑤2
,  i=1, 2  (14) 

4th Layer: Weighted mean value of the ith rule is; 

 𝑄𝑖
4 = 𝑤̄𝑖𝑓𝑖 = 𝑤̄𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑥 + 𝑟𝑖)  (15) 

where, 𝑝𝑖 , 𝑞𝑖, 𝑟𝑖are the parameters and𝑤𝑖is the output. 

5th Layer: The final output is obtained by summing up all of the incoming values. 

 𝑄𝑖
5 = overall output = ∑ 𝑤̄𝑖𝑖 𝑓𝑖 =

∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
  (16) 
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The ANFIS can be trained by a hybrid learning algorithm presented by Jang (1993) [36]. The aim of the 

learning process is to determine the premise parameters (see Layer 1) and consequent parameters (see Layer 4) 

based on error measures which should be minimize. Error measurement is performed by using the difference 

between the observed and predicted outputs. Root mean square error (RMSE) is the source of the ANFIS error 

measurement process. The deeper information about the ANFIS can be found in the studies of Jang (1993) [36]. 

3.4 Performance Evaluation Criteria  

The performance of a model can be evaluated by using standard statistical performance evaluation criteria. In 

this study, RMSE, MAE, R, and Bias were selected as the performance criteria. According to Legates and 

McCabe (1999), the R only evaluates linear relationship between the variables [51]. It sometimes makes poor 

model performance due to it measure relative error between the measured and predicted values. Therefore, 

RMSE and MAE techniques which measure the absolute errors were also adopted in this study. The 

performance of the RMSE, MAE, and Bias were investigated by Willmott (1982) [52]. The results showed that 

these criteria can be used for the hydrological studies. On the other hand, the literature review we did at the 

beginning of the paper showed that these performance criteria are widely used in the coastal engineering studies. 

Based on the relevant literature, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), the correlation 

coefficient (R) and Bias can be defined as follows:  

 𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑡
𝑜−𝑦𝑡

𝑝
)

2𝑛
𝑡=1

𝑛
× 100  (17) 

 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑡

𝑜 − 𝑦𝑡
𝑝

|𝑛
𝑡=1   (18) 

 

 𝑅 =
∑ (𝑦𝑡

𝑜−𝑦̄𝑜)(𝑦𝑡
𝑝

−𝑦̄𝑝)𝑛
𝑡=1

√∑ (𝑦𝑡
𝑜−𝑦̄𝑜)

2
∑ (𝑦𝑡

𝑝
−𝑦̄𝑝)

2𝑛
𝑡=1

𝑛
𝑡=1

  (19) 

 

 Bias =
1

𝑛
∑ (𝑦𝑡

𝑝
− 𝑦𝑡

𝑜)𝑛
𝑡=1   (20) 

where, 𝑦𝑡
𝑜, 𝑦𝑡

𝑝
, and n denote observed and the predicted values and the total number of observations, 𝑦̄ denotes 

the mean value. 

4. Results 

In this study, wave height and wave period data were derived from a buoy station located in Filyos region (see 

Figure 1). The wave height parameters (Hs, Hmean, H1/10, Hmax) and their corresponding periods (Ts, Tmean, T1/10, 

Tmax) were obtained. After arranging the obtained data in an excel sheet, seven sub-models were built that use 

the previous values of the selected parameters as predictors of wave height parameters (see Table 2). These 

proposed sub-models were used for both ANFIS, and MLPNN models, which are described in Tables 3, and 4, 

respectively. The wave data used was divided into two parts; first part being the training set consisting of 5565 

readings (70% of the wave data available) and the second part being the testing set consisting of 2384 readings 

(30% of the wave data available).  

Table 3. Characteristics of the MLPNN Models. 

Wave 

Parameters 
Model No 

Network 

Configuration 

Algorithm 
Transfer Func. 

Hs Mod-6 3-3-1 Back propagation Log. sig. 

Hmean Mod-7 3-3-1 Back propagation Hyp.tan.sig. 

H1/10 Mod-3 2-2-1 Cascade correlation Hyp.tan.sig. 

Hmax Mod-1 2-2-1 Cascade correlation Hyp.tan.sig. 

 

Table 4. Characteristics of the ANFIS Models. 

Wave Parameters Model No Membership Func. Consequent Part Epoch 

  Type Number   

Hs Mod-6 Gumbell 5 Constant 300 

Hmean Mod-7 Gauss 8 Constant 100 
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H1/10 Mod-7 Gumbell 5 Constant 500 

Hmax Mod-7 Gauss 8 Constant 150 

 

The sub-models developed in this study for the prediction of different representative wave height 

parameters were used to evaluate various statistical performance indicators to assess the accuracy and 

performance of these sub-models. 

4.1 Results obtained using MLPNN sub-models 

The MLPNN sub-models were trained and tested. All inputs were normalized between 0 and 1. The seven sub-

models explained in Table 2 were used to predict the wave height parameters and acceptable results were 

obtained from all sub-models. However, Mod-7 for Hmean, Mod-6 for Hs, Mod-3 for H1/10, and Mod-1 for Hmax 

performed better than the others. In these predicted sub-models back propagation and cascade correlation 

algorithm were used. In addition, hyperbolic tangent sigmoid transfer function performed favorably, (ie. the 

error is lower) than logarithmic sigmoid transfer function as can be seen from Table 5.  

Table 5. The Summary of Model Performance Measures. 

Method 
Predicted 

Parameter 

Sub-

Model 

Training Testing 

RMSE 

(%) 

MAE 

(%) 
R Bias 

(m) 

RMSE 

(%) 

MA

E 

(%) 

R Bias 

(m) 

MLPN

N 

Hs Mod-6 3.33 1.82 0.95 0.09 3.16 1.90 0.93 0.09 

Hmean Mod-7 3.19 1.76 0.95 0.08 3.07 1.71 0.93 0.08 

H1/10 Mod-3 3.52 1.98 0.95 0.09 3.34 1.92 0.93 0.09 

Hmax Mod-1 4.48 2.53 0.91 0.19 4.30 2.52 0.87 0.18 

ANFIS Hs Mod-6 3.15 1.79 0.95 0.09 3.15 1.80 0.94 0.09 

Hmean Mod-7 2.95 1.65 0.96 0.05 3.45 1.73 0.94 0.06 

H1/10 Mod-7 3.35 1.92 0.95 0.12 3.42 1.94 0.93 0.12 

Hmax Mod-7 3.94 2.50 0.93 0.17 4.28 2.47 0.89 0.19 

 

The observed and predicted wave parameters for training and testing for the developed MLPNN sub-

models are presented in Figure 5 (a, b, c, d, e, f, g, h), respectively. 
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Figure 5. Comparison Between the Observed and Predicted Wave Parameters for; (a) Training Using MLPNN 

Hmean; (b) Training Using MLPNN Hs; (c) Training Using MLPNN H1/10; (d) Training Using MLPNN Hmax; (e) 

Testing Using MLPNN Hmean; (f) Testing Using MLPNN Hs; (g) Testing Using MLPNN H1/10; (h) Testing Using 

MLPNN Hmax. 

These results were also summarized in Table 5 by selecting the best performing sub-models for each wave 

height parameter. In Table 5, the R values for Hmax were obtained as 0.91 for training and 0.87 for testing, which 

means that the results may be used for design purposes. For the rest of the predicted parameters (Hmean, Hs, 

H1/10), R values were obtained as 0.95 for training and 0.93 for testing. The lowest R was obtained for Hmax, 

which is an expected result as Hmax varies more than the other wave parameters. In addition to R, the 

performance indicators, such as RMSE, MAE, and Bias were presented in Table 5. According to these indicators 

for both testing and training the error, it was observed that a decrease in the following order: 1st: Hmax, 2nd: H1/10, 

3rd: Hs, and 4th: Hmean. 

4.2 Results obtained using the ANFIS sub-models 

Similarly, the MLPNN model seven sub-models of ANFIS were developed using same input combinations. It 

was observed that Mod-6 and Mod-7 provides better results by taking all seven sub-models into account. 

Moreover, Gumbell and Gauss membership functions were preferred for these sub-models thanks to better 

performances (Table 4). For the ANFIS sub-models, Figure 6 (a, b, c, d, e, f, g, h), illustrated the accuracies of 

the trained and the tested data sets, respectively.  
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Figure 6. Comparison Between the Observed and Predicted Wave Parameters for; (a) Training Using ANFIS Hmean; 

(b) Training Using ANFIS Hs; (c) Training Using ANFIS H1/10; (d) Training Using ANFIS Hmax; (e) Testing Using 

ANFIS Hmean; (f) Testing Using ANFIS Hs,; (g) Testing Using ANFIS H1/10; (h) Testing Using ANFIS Hmax. 

The modeling results were presented separately for RMSE, MAE and R in Figure 7(a, b), 8(a, b), and 9(a, 

b), respectively. Figure 7, 8 and 9 showed that the observations and sub-model outputs are sufficiently close to 

each other. The best performing sub-models for each wave height parameter were presented in Table 5 where, 

the R values for Hmax are obtained as 0.93 for training and 0.89 for testing, which means that the results are 

acceptable for design purposes. For Hmean, Hs, and H1/10, R values are obtained as 0.96 for training and 0.94 for 
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testing. Again, as was the case for the MLPNN sub-models, the lowest R for ANFIS sub-models is obtained for 

Hmax. The best results in terms of performance indices were obtained for three inputs and results are presented 

in Figure 7(a, b), 8(a, b), and 9(a, b). 

 

Figure 7. Root Mean Square Error Values for the MLPNN and ANFIS Models; (a) Training Data; (b) Testing Data. 

Figure 8. Mean Absolute Error Values for the MLPNN and ANFIS Models; (a) Training Data; (b) Testing Data. 
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Figure 9. Correlation Coefficients for the MLPNN and ANFIS Models; (a) Training Data; (b) Testing Data. 

It can be observed from these figures that, RMSE is less than 4% for the training data set and about 4,3% 

for the testing data set. Also, the MAE values were found out to be approximately the same for both data sets, 

(i.e., training and testing.) As a result, it can be concluded that these sub-models give reasonable prediction 

performance for the represented wave heights. 

5. Discussion 

There are two different issue to discuss in this study. First one is the prediction of significant wave height, Hs, 

which have been commonly studied on the literature. Several soft computing models for the prediction of 

significant wave height were published by the researchers. Almost all sub-models used in this study for MLPNN 

and ANFIS has a R value of greater than 0.90. Similarly low error can be seen in terms of RMSE, MAE, and 

Bias parameter for developed sub-models. Therefore, our findings, are well in agreement with relevant 

literature. In addition, the performance of the MLPNN (which is an ANN-based method) were tested in this 

study. It can be accepted as an accurate modeling method for the significant wave height prediction. Although 

both the MLPNN and ANFIS models performed reasonably well in training and testing as evident by the 

presented representative wave height parameters, the accuracy of the ANFIS sub-models is found out to be 

better than the MLPNN sub-models.  

The other issue is the prediction of wave height parameters other than significant wave height such as 

Hmean, H1/10, and Hmax. In the related literature, studies are found, where revision necessity for the coastal 

structure design formulae due to the rise in the wave height parameters as a consequence of climate change, is 

reported [41]–[44]. Also, we realize that there is a scarcity on the literature to predict other wave height 

parameters required for coastal activities. To this end, the prediction of Hmean, H1/10, and Hmax have a paramount 

importance. Both MLPNN and ANFIS model used in this study showed a good performance for prediction in 

terms of performance evaluation criteria. The results presented in Table 5 show that, the error paramaters for 

both MLPNN and ANFIS sub-models in predicting the representative wave height parameters decrease as the 

wave height parameters, such as Hmax and H1/10 increase. It can also be observed from Table 5 that, for both 

training and testing data sets relatively weaker correlation, comparing with the other wave height parameters, 

is obtained for Hmax, The most accurate sub-model out of the proposed sub-models is {H(t), H(t-1), H(t-3), T(t-1) for 

Hs and H(t), H(t-1), H(t-3), H(t-5)} for Hmean for both ANFIS and MLPNN. 

6. Conclusions 

In this study representative wave height of the Filyos region along the Southwest Coast of the Black Sea were 

predicted by using 2-hourly wave dataset. Trial and error algorithm was used to select input combinations. 

Seven sub-models were created that include the previous wave height and wave period data as predictor. The 

target or output of these sub-models were selected as the one-time ahead wave height parameters. Entire data 

set divided into two as train and test as a data pre-process. Train data set includes 70% of the entire data, whereas 

test data set includes 30%. The predictor and predictand parameters were selected randomly to apply models. 
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Then, MLPNN and ANFIS models were developed, and each sub-model were tested individually. Before the 

MLPNN model was created, all train and test data set were normalized. The performance evaluation of the 

models was performed in terms of R, RMSE, MAE, Bias. The results showed that the wave height parameters 

predicted by the MLPNN and ANFIS models are similar and both methods yield results, which may be 

acceptable for design purposes. However, for maximum wave height, Hmax, ANFIS sub-models yield results 

having slightly lower error. It is shown in this study that, the error paramaters decrease for both MLPNN and 

ANFIS sub-models as the wave height parameters increase and relatively weaker correlation, comparing with 

the other wave height parameters, is obtained for Hmax. The most accurate sub-model out of the proposed sub-

models is also determined and presented. 

As the results obtained in this study are very promising due to the randomness and uncertainty involved 

in predicting the wave height parameters. Both MLPNN and ANFIS may be better alternatives than the related 

conventional deterministic or statistical techniques used in coastal engineering design. Among these models, 

the ANFIS model may be chosen as it yields slightly better results and also is less time consuming than the 

MLPNN model. This study only considers the previous wave heights and wave periods as a predictor of target. 

Meteorological parameters such as wind speed, wind direction, air temperature etc. are not considered in this 

study. In the future works, it will be a good practice to investigate the contribution of meteorological factors on 

wave height parameters including Hmean, H1/10, and Hmax.  
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