
 

KBES 2020, 1,1 https://kbes.journals.publicknowledgeproject.org/index.php/kbes 

ON THE EVALUATION OF THE GRADIENT TREE 

BOOSTING MODEL FOR GROUNDWATER LEVEL 

FORECASTING 

Sujay Raghavendra Naganna1, Beste Hamiye Beyaztas2, Neeraj Dhanraj Bokde3,* and Asaad M. 

Armanuos4 

1 Department of Civil Engineering, Siddaganga Institute of Technology, Tumakuru 572103, Karnataka, India. 
2 Department of Statistics at Istanbul Medeniyet University, Turkey. 

3 Department of Engineering - Renewable Energy and Thermodynamics, Aarhus University, 8000, Denmark. 
4 Irrigation and Hydraulics Engineering Department, Civil Engineering Department, Faculty of Engineering, Tanta 

University, Egypt. 

*Corresponding: neerajdhanraj@eng.au.dk 

Abstract 

Though groundwater is a replenishable resource, it’s over exploitation has posed greater problem of its 

depletion. Hence, monitoring and forecasting of groundwater levels has become a primary task of governmental 

water boards/agencies for sustainable water management. The current study focused on evaluating the 

performance of Gradient Tree Boosting (GTB) model with that of conventional Adaptive Neuro-Fuzzy 

Inference System (ANFIS) and Group Method of Data Handling (GMDH) models in forecasting groundwater 

levels of two coastal aquifers. Data of two groundwater level monitoring wells penetrating into unconfined 

aquifers located at Shirtadi and Rayee near to Mangalore city of Karnataka state, India was considered in the 

present study. Monthly groundwater level data of the years 2000 – 2013 were used for model simulation; 

wherein 70% of data was used for model training and the remaining 30% served as testing data. Comparative 

result evaluation shows that the proposed GTB approach for one month ahead groundwater level forecasting 

was giving much accurate results than the other models for the same period of time and same set of data. For 

Rayee monitoring well, the error statistic, RRMSE of GTB, GMDH and ANFIS models obtained during test 

phase were 0.473, 0.517 and 0.7522, respectively. The comparison is examined further with different 

performance metrics. 
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1. Introduction 

One of the prominent water resources on earth is groundwater [1]. Groundwater is mainly used for irrigation 

purposes as it accounts for almost 80% of groundwater usage. Groundwater is also used for domestic, industrial, 

and drinking purposes. Groundwater level prediction is important for effective management of ground water 

resources [2], [3]. The variations in groundwater level is influenced by time-dependent recharging and discharge 

processes, tidal effects, streamflow variations, climate change and weather impacts [4].  

Recently, scholars have relied on computational modelling of flow and transport to understand the 

hydrology of water bodies and groundwater [5], [6]. However, the conversion of the physical processes into 

mathematical formulations, as well as the lack of sufficient data to execute the modelling process, is some of 

the challenges of using numerical models. Interestingly, artificial modelling techniques have been developed 

over the last two decades as an approach to overcome these shortcomings of the numerical models [7]–[9]. For 

instance, artificial neural network (ANN) model has been used for the prediction of fluctuations in groundwater 

level; the study relied on time-lagged water levels as the model input [10]. Furthermore, the ANN model was 

improved by Jalalkamali and Jalalkamali [11] through merging it with the genetic algorithm (GA) in order to 

address some of the common issues of the conventional ANN, such as optimizing the process of finding the 

global minimum of the error cost function. The performance of ANN and support vector machine (SVM) 

models in groundwater levels prediction has been compared by Yoon et al. [12]; while genetic programming 

(GP) and adaptive neural fuzzy inference system (ANFIS) were investigated as artificial tools for groundwater 

levels prediction in 3 observation wells in the Karaj plain of Iran [13]. The study by Shiri et al. (2013) focused 

on the performance of various data mining techniques in the prediction of groundwater level while support 

vector machines (SVM) were used to model the groundwater level of Hamadan–Bahar plain, west of Iran [14]. 

The use of ANN for groundwater level prediction under the impact of different factors for the period of 2000–

2015 has been conducted for Vietnam region and evidenced its capacity [15]. 
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ANN and M5 Tree models have been used by Kaya et al. [16] for groundwater level prediction in the 

Reyhanli region of Turkey and the study found both models to have performed equally in groundwater level 

prediction. Lee et al. [17] investigated the performance of ANN model in the prediction of groundwater level 

in Yangpyeong riverside, South Korea; the input variables used in the study consisted of one natural factor and 

two artificial indicators. A two phase data-driven model has been used for time series groundwater level 

prediction [18]; the study relied on spatial–temporal analysis and least-square SVM (LS-SVM) but found better 

performance with the LS-SVM model compared to the other models used. The groundwater level prediction 

performance of ANN, GP, SVM, and ELM at six locations in the district of Vizianagaram, Andhra Pradesh, has 

been compared by Natarajan and Sudheer [19]; the study observed the best performance with ELM compared 

to the ANN, GP, and SVM models. In another study, the prediction performance of ensemble model (EANN-

GA), emotional ANN (EANN), generalized regression neural network (GRNN), and the conventional 

feedforward neural network (FFNN) in the prediction of one-month ahead groundwater level has been compared 

by Roshni et al. [20] in a coastal aquifer system. From the results, the EANN-GA model performed better than 

the EANN, FFNN, and GRNN models. The study by Rahman et al. [21] evaluated the performance of 

hybridized machine learning-wavelet transform model in the prediction of groundwater level; the outcome of 

the study demonstrated the possibility of hybridizing some novel ML methods, such as Random Forests and 

eXtreme Gradient Boosting with wavelet transforms for accurate prediction of groundwater level in Southern 

Japan. Recent researches include, development of robust hybrid ML models such as the multilayer perceptron 

neural network optimized by whale algorithm (MLP–WA), for groundwater level predictions in the Yazd 

province of Iran [8]; ensemble modelling framework for groundwater level prediction in urban areas 

(Bangalore) of India [22]. The groundwater dynamics changes from region to region based on climate and 

rainfall pattern over the area. The highly diversified occurrence, wide variations in the precipitation 

characteristics and seasonal variations in utilization of ground water makes its management a challenging task. 

Therefore, it becomes pertinent to analyze and understand the groundwater fluctuations in different 

hydrogeological situations [23]. Hence, the current study focused on modeling groundwater levels of two 

shallow coastal aquifers by the development of novel Gradient Tree Boosting (GTB) model and compare its 

performance against conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) and Group Method of 

Data Handling (GMDH) models. 

The remainder of this article is organized as follows: Section 2 demonstrates the forecasting models that 

are employed in the case study. Section 3 describes the case study and methodology wherein geological features 

of two groundwater level monitoring wells penetrating into unconfined aquifers located at Shirtadi and Rayee 

near to Mangalore city of Karnataka state, India have been presented. In Section 4, the results and discussions 

of the case study are presented. Finally, the conclusions of the paper are summarized in Section 5.  

2. Applied machine learning models 

2.1 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

ANFIS model that consist of ANN and Fuzzy Inference System (FIS) was proposed by Jang (1993) [24]. Both 

models were used as a multilayer network in ANFIS for mapping and modelling of the input-output relationship 

[25] while the rules are applied as membership functions (MFs) for a fuzzy decision. The FIS relies on the IF-

THEN principle; hence, the FIS can be used as a reliable prediction model in situations where there is 

uncertainty in the dataset. Figure 1 shows the architecture of ANFIS. The adaptive nodes in the first layer are 

designed for input membership grades generation with the following output: 

 𝑂1,𝑖 = 𝜇𝐴𝑖(𝑥)  for 𝑖 = 1,2 (1) 

 𝑂1,𝑖 = 𝜇𝐵𝑖−2(𝑦)  for 𝑖 = 3,4 (2) 

where, the input nodes are represented by x and y while 𝐴𝑖 and 𝐵𝑖are the fuzzy set; 𝜇(𝑥)and 𝜇 (𝑦) represent 

the MFs (there are different shapes of the MFs, such as triangular, general bell, trapezoidal, and Gaussian). The 

nodes in the second layer are designated as П, with all the incoming signals being multiplied by each node. The 

firing strength of each rule is described by the output; this can be calculated thus: 

 𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑥) ∗ 𝜇𝐵𝑖(𝑦)  for 𝑖 = 1,2 (3) 

The nodes in the third layer are marked as N; the normalized firing strength in this layer is computed using 

the following equation. The  𝑖𝑡ℎ rule contribution of each node is calculated in the fourth layer while the total 

output of the ANFIS is determined in the fifth layer. 

 
𝑂3,𝑖 = 𝑤̅𝑖 =

𝑤𝑖

𝑤1+𝑤2
  for 𝑖 = 1,2 

(4) 
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 𝑂4,𝑖 = 𝑤̅𝑖 × 𝑓𝑖 (5) 

 
𝑂5,𝑖 = ∑ 𝑤̅𝑖 . 𝑓𝑖

𝑛

𝑖=1
 

(6) 

 

Figure 1: Structure of ANFIS model. 

 

2.2 Group Method of Data Handling (GMDH) 

Ivakhnenko, a former Soviet scientist, first suggested the GMDH algorithm as a method for the identification 

of the nonlinear input-out relationships [26]. This model generates a high-order polynomial network which in 

principle is a feed-forward & multilayer neural network (Figure 2). It provides a platform for self-organized 

data mining wherein the modelling variables, parameters, and structure are automatically determined [27]. In 

the GMDH models, the input dataset is partitioned into 2 groups, with the first group being used for the 

approximation of the parameters of each neuron; this aids in partial description of the modelling process. The 

second group of dataset is for the determination of the performance of each of the models that efficiently 

described the process [28]. The training dataset is specifically used to approximate the Kolmogorov–Gabor 

polynomial coefficients while the testing set is used for error evaluation in the GMDH network. In the GMDH 

network, successive layers are constructed and the connections between the layers represent the individual terms 

of a polynomial [29]. An external criterion is used to assess and evaluate the output of each neuron; neurons 

that performed poorly are eliminated by the model while the ones that performed excellently are retained in the 

next layer. New layers ae created by repeating this step until there is stability in the error criterion. Previous 

studies have provided detailed description of the GMDH model [29]–[31]. The Volterra functional series of the 

Kolmogorov–Gabor polynomial expresses the general input-output relationship in the GMDH algorithm as 

follows [32]: 

 

𝑦(𝑡) =  𝑎0 + ∑ 𝑎𝑖𝑥𝑖

𝑛

𝑖=1

+ ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

+ ∑ ∑ ∑ 𝑎𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘

𝑛

𝑘=1

𝑛

𝑗=1

𝑛

𝑖=1

 

(7) 

where, 𝑦(𝑡) represent the output variable, while X(𝑥1 , 𝑥2, . . ., 𝑥𝑛 ) represent the input variable’s vector; A 

(𝑎1, 𝑎2, . . .,𝑎𝑖) represent the vector weights or coefficients. In the GMDH model, variables with the most 

influence on the system are first paired and set a default threshold; this effectively eliminates the poorly 

performing variables. 
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Figure 2: Structure of GMDH model. 

2.3 Gradient Tree Boosting (GTB) 

Let 𝑋 = {𝑥1, … , 𝑥𝑛} be the vector input with output as y; the training process of a metamodel is mainly aimed 

at establishing a relationship which can rely on a given training data set, {𝑋𝑖 , 𝑦𝑖}1
𝑁  to represent a 

function 𝐹𝑜𝑝𝑡(𝑋) and map X to y in a way that the predetermined loss function, Loss(y, F (X)), of the expected 

value 𝐹(𝑋𝑖) and the exact value 𝑦𝑖is minimized. Hence, 𝐹𝑜𝑝𝑡(𝑋) can be expressed thus: 

 𝐹𝑜𝑝𝑡(𝑋) =  𝑎𝑟𝑔𝐹(𝑋) min 𝐿𝑜𝑠𝑠(𝑦, 𝐹(𝑋)) (8) 

The solution to the problem in Eq. (8) is achieved by developing a tree ensemble model that sequentially 

combined several decision trees (also called base learners) to achieve a stronger learner. Being that a base 

learner can only predict output with a high residual, it is also called is a weak base learner. The obtained residual 

from the previous decision tree (DT) is used at each iteration as the output for the development of new DTs 

[33]; this improves the accuracy of the training process and reduces the residual. The output of the GTB method 

is calculated using a tree ensemble model as follows; where {𝛽𝑚}0
𝑀 are added to accommodate the importance 

of the base learner [34]. 

 

𝐹(𝑋) =  ∑ 𝛽𝑚𝑓(𝑋, 𝑎𝑚)

𝑀

𝑚=0

 

(9) 

where, 𝑓(𝑋, 𝑎𝑚) could represent simple functions of X with a range of parameters 𝑎𝑚{𝑎1
𝑚, 𝑎2

𝑚 , … , 𝑎𝑛
𝑚}. Based 

on an initial guess 𝐹0(𝑋), the equation for updating the model can be written as: 

 𝐹𝑚(𝑋) =  𝐹𝑚−1(𝑋) + 𝛽𝑚𝑓(𝑋, 𝑎𝑚) (10) 

Simply,  𝐹0(𝑋) can be set to 0; the two-step gradient decent-like procedure is used to determine 𝛽𝑚 

and𝑎𝑚; first, the following equation is used to calculate𝑎𝑚: 

 

𝑎𝑚 = 𝑎𝑟𝑔𝑎,𝜌𝑚𝑖𝑛 ∑[𝑦̅𝑖𝑚 − 𝜌𝑓(𝑋𝑖; 𝑎)]2

𝑁

𝑖=1

 

(11) 

where 𝜌 is defined as the step size and 

 
𝑦̅𝑖𝑚 = − [

𝜕𝐿𝑜𝑠𝑠(𝑦𝑖 , 𝐹(𝑋𝑖))

𝜕𝐹(𝑋𝑖)
]

𝐹(𝑋)=𝐹𝑚−1(𝑋)

 
(12) 

Then, 𝛽𝑚 is calculated as: 
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𝛽𝑚 = 𝑎𝑟𝑔𝛽𝑚𝑖𝑛 ∑ 𝐿𝑜𝑠𝑠(𝑦𝑖 , 𝐹𝑚−1(𝑋𝑖) + 𝛽𝑓(𝑋𝑖; 𝑎))

𝑁

𝑖=1

 

(13) 

3. Case study and modeling development 

Data of two groundwater level monitoring wells penetrating into unconfined aquifers located at Shirtadi and 

Rayee near to Mangalore city of Karnataka state, India was considered in the present study. The local geological 

features are of archaic origin characterized by exposed lateritic soil in hilly tracts and sandy soil. Uni-variate 

machine learning based time series models were implemented. Monthly groundwater level data of the years 

2000 – 2013 were used for model simulation; wherein 70% of data was used for model training and the 

remaining 30% served as testing data. Table 1 presents the groundwater level data statistics of the monitoring 

wells. The input – output structure of the models developed were arrived based on Autocorrelation (ACF) and 

Partial Autocorrelation (PACF) plots as presented in Figures 3 and 4. For Shirthadi and Rayee monitoring well, 

both ACF and PACF patterns trailing off at several lags, 12, 11, 10, 1 and 0. This ensures that the time series 

have significant series correlations, and an effective model can be designed. The input – output structure of 

models for one month ahead groundwater level forecast is as presented below. 

GWT(t-12) + GWT(t-11)+ GWT(t-10) + GWT(t-1) + GWT(t)         GWT(t+1)                         (14) 

  

Figure 3: Autocorrelation and Partial autocorrelation in Groundwater level data of Shirthadi monitoring well. 

  

Figure 4: Autocorrelation and Partial autocorrelation in Groundwater level data of Rayee monitoring well. 

Table 1: Groundwater level Data Statistics of Monitoring wells. 

Monitoring 

Well 
Minimum Maximum Mean 

Standard 

Deviation 

Coefficient of 

Variation 

Shirthadi 13.35 0.68 8.960 2.835 0.316 

Rayee 12.4 1.03 7.022 2.779 0.396 

Note: Groundwater level data is the depth to water table below ground level in meters. 

The forecast performance of GTB, GMDH and ANFIS models were evaluated using statistical indices as 

mentioned below. 

i. Relative Root Mean Square Error (RRMSE) [35]: 
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𝑅𝑀𝑆𝐸 = √

∑ (𝑂𝑖−𝑃𝑖)2𝑁
𝑖=1

𝑁
; and 𝑅𝑅𝑀𝑆𝐸 =

𝑅𝑀𝑆𝐸

𝜎𝑜𝑏𝑠
 

(15) 

ii. Normalized Nash Sutcliffe Efficiency (NNSE) [36]: 

 
𝑁𝑆𝐸 = 1 −

∑ (𝑃𝑖−𝑂𝑖)2𝑁
𝑖=1

∑ (𝑂𝑖−𝑂)2𝑁
𝑖=1

 ; and 𝑁𝑁𝑆𝐸 =
1

2−𝑁𝑆𝐸
 

(16) 

iii. Normalized Mean Bias (NMB) [37]: 

 
𝑁𝑀𝐵 =

∑ (𝑃𝑖 − 𝑂𝑖)𝑁
𝑖=1

∑ 𝑂𝑖
𝑁
𝑖=1

 
(17) 

iv. Kling Gupta Efficiency (KGE) [38]: 

 𝐾𝐺𝐸 = 1 − √(𝑅 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 (18) 

where, Correlation Coefficient, Bias ration and variability 

 
𝑅 =

∑ (𝑂𝑖−𝑂)⋅(𝑃𝑖−𝑃)𝑁
𝑖=1

√∑ (𝑂𝑖−𝑂)2⋅∑ (𝑃𝑖−𝑃)2𝑁
𝑖=1

𝑁
𝑖=1

, 𝛽 =
𝑃

𝑂
 , 𝛾 =

𝐶𝑉𝑃

𝐶𝑉𝑂
=

𝜎𝑝

𝑃
⁄

𝜎𝑜
𝑂

⁄
 

 

v. Willmott’s Index of Agreement (WI) [39]: 

 
𝑊𝐼 = 1 −

∑ [(𝑃𝑖 − 𝑂) − (𝑂𝑖 − 𝑂)]2𝑁
𝑖=1

∑ [(𝑃𝑖 − 𝑂) + (𝑂𝑖 − 𝑂)]2𝑁
𝑖=1

 
(19) 

where, O and P represent the observed and predicted groundwater level values, respectively. 𝑂̅ and 𝑃̅ are the 

mean values of observed and forecasted time-series, 𝜎𝑜 and 𝜎𝑝 are the standard deviation values of observed 

and forecasted time-series, respectively. ‘N’ represents the total number of data samples.   

4. Results and Discussion 

Groundwater level or water table is a key indicator for the water scientists and hydro-geologists worldwide, to 

monitor or estimate groundwater reserves so as to predict future droughts and famine conditions. Herein, the 

implemented techniques (GTB, GMDH and ANFIS) function as forecasting models to predict the values of 

groundwater levels of subsequent month using the antecedent time-series. Many researchers have proposed 

different machine learning and hybrid algorithms to forecast multi-scale groundwater levels. But in the current 

scenario, a supervised machine learning technique, Gradient Tree Boosting commonly known as GTB, which 

are ensembles of so-called decision trees is used for forecasting to get high precision results. The performance 

and memory requirements of GTB models are dependent on optimal tuning of its hyper-parameters namely, the 

number of boosting stages, learning rate, maximum depth, and the loss function which were found based on 

trial and error approach. Similarly, the model parameters of GMDH and ANFIS models were also worked out 

by trial and error approach. 

Table 2 presents the performance statistics of machine learning models in groundwater level forecasting 

of Shirthadi monitoring well. The performance of our novel model i.e., GTB is compared with that of the widely 

used GMDH and ANFIS models. The error statistic, RRMSE of GTB, GMDH and ANFIS models obtained 

during test phase were 0.473, 0.517 and 0.7522, respectively. It could be observed that the ANFIS model 

performed poorly with maximum error. NMB statistic indicates whether the modeled mean under or 

overestimates the observed mean. The NMB values close to 0 shows the model superiority. From, the Table 2 

it’s evident that GTB performed better than GMDH and ANFIS models based on all the five evaluation indices. 

In terms of R2 statistic obtained in scatter plots (Figure 5), GTB gives the best fit with minimum over-fitting 

compared to the GMDH and ANFIS forecasts. 

Table 2. Performance of ML models in GW level forecasting of Shirthadi Monitoring Well 

Statistic GTB GMDH ANFIS 

KGE 0.8470 0.8167 0.6908 

NMB -0.0020 0.0117 0.0392 

NNSE 0.8153 0.7871 0.6358 

RRMSE 0.4730 0.5170 0.7522 

WI 0.9354 0.9194 0.8379 
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Figure 5: Scatter plots of GTB, GMDH and ANFIS groundwater level forecasts of Shirthadi well. 

The detailed performance metrics of test phase with respect to Rayee monitoring well are depicted in Table 

3. Among the three different regressors, GTB provides prediction with minimum error (RRMSE) and maximum 

efficiency (NNSE/KGE/WI). In terms of RRMSE, GTB outperforms GMDH and ANFIS models by 51.68% 

and 64.20%, respectively. The NMB statistic of GTB is the minimum and this demonstrates the superiority of 

the GTB method. It’s worth mentioning that the groundwater level forecast performance of GTB is significantly 

closer to the 1:1 line with R2=0.95 as indicated in the scatter plots depicted in Figure 6. Usually, the problem of 

over-fitting is avoided by the usage of boosting algorithm like GTB. In GTB, each new tree aid in correcting 

errors of the previously trained tree and optimal combination of parameters assist to build more generalized 

models. From Table 2, its clearly evident that the efficiency (WI) of GTB model is higher by 1.74% and 11.63% 

to that of GMDH and ANFIS models, respectively. 

Table 3. Performance of ML models in GW level forecasting of Rayee Monitoring Well. 

Statistic GTB GMDH ANFIS 

KGE 0.9642 0.8060 0.8086 

NMB -0.0143 -0.0159 0.0312 

NNSE 0.9568 0.8379 0.7393 

RRMSE 0.2112 0.4371 0.5901 

WI 0.9883 0.9405 0.9020 

 

 

Figure 6: Scatter plots of GTB, GMDH and ANFIS groundwater level forecasts of Rayee well. 

The Taylor diagrams supply visual analysis to rank the machine learning models based on three statistical 

indices (RMSD, Correlation coefficient and Standard deviation). For the models of Shirthadi and Rayee well 

locations, Taylor diagrams are presented in Figures 7 and 8, respectively. Well the Taylor diagrams indeed 

supplement the earlier evidences and portray that GTB regressor outperforms the other two namely, the GMDH 

and ANFIS in terms of all statistical indices. Comparative evaluation shows that the proposed GTB approach 

for one month ahead groundwater level forecasting was giving much accurate results than the other models for 
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the same period of time and same set of data. The WI and NNSE indices also show the superiority of GTB 

model predictions. From Table 3, its clearly evident that the NNSE of GTB model is higher by 14.19% and 

29.42% to that of GMDH and ANFIS models, respectively.  

 

Figure 7: Taylor Diagram for comparative evaluation of performance of GTB, GMDH and ANFIS models in 

forecasting GW levels of Shirthadi monitoring well. 

 

Figure 8: Taylor Diagram for comparative evaluation of performance of GTB, GMDH and ANFIS models in 

forecasting GW levels of Rayee monitoring well. 

5. Conclusions 

New methodologies for groundwater level forecasting along with the existing approaches was considered in the 

present study. The GMDH, ANFIS and GTB were implemented to check for the model suitability and 

applicability. Based on several statistical and visual evaluation metrics, GTB was found to provide better one 

month ahead groundwater level forecasts at both Shirthadi and Rayee locations considered. For Rayee 

monitoring well, the error statistic, RRMSE of GTB, GMDH and ANFIS models obtained during test phase 

were 0.473, 0.517 and 0.7522, respectively. The comparison is examined further with different performance 

metrics. In addition, GTB is computationally efficient and fast for time series data prediction along with high 

prediction accuracy. 
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